Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Здоровье ребенка» Том 19, №8, 2024

Вернуться к номеру

Автозапальні захворювання. Частина 2. Піринові інфламасомопатії та інші синдроми посилення сигналу інтерлейкіну-1

Авторы: Шварацька О.В., Бордій Т.А., Годяцька К.К., Калічевська М.В., Клименко О.В., Таран О.М., Клімова О.В., Віленський Я.В.
Дніпровський державний медичний університет, м. Дніпро, Україна

Рубрики: Педиатрия/Неонатология

Разделы: Клинические исследования

Версия для печати


Резюме

Системні автозапальні захворювання (САЗЗ) вважаються розладами вродженої імунної системи, які характеризуються системним стерильним запаленням, що не залежить від інфекції та автореактивних антитіл або антигенспецифічних Т-клітин. Автозапалення часто опосередковується інфламасомами, відповідно, інфламасомопатії та інші синдроми посилення сигналу інтерлейкіну-1 (IL-1) являють собою велику класифікаційну групу САЗЗ. Інфламасоми відмінні за типом внутрішньоклітинного рецептора, який стає каркасом для всього комплексу, а пірин є одним з основних внутрішньоклітинних сенсорних білків, які здатні ініціювати утворення інфламасом. Даний науковий огляд є другим у серії публікацій, об’єднаних загальною метою підвищення обізнаності лікарів щодо проблеми САЗЗ у дітей. У фокусі даної роботи — сучасні наукові уявлення про піринові інфламасомопатії, які становлять значний кластер усіх інфламасомопатій, та інші синдроми посилення сигналу IL-1. Пошук інформації за останні 10 років здійснювався за базами даних Web of Science, Scopus, PubMed Central®, Google Scholar за ключовими словами “autoinflammatory diseases”, “autoinflammation”, “inflammasomopathies”, “pyrin”. У роботі наведена загальна характеристика інфламасомопатій, обговорено імунобіологічні особливості сенсорного білка пірину і піринових інфламасом, їх клітинна експресія, молекулярні механізми їх активації та обмеження сигналу. В огляді також подана клініко-патогенетична характеристика генетично визначених піринових інфламасомопатій та інших синдромів посилення сигналу IL-1: сімейної середземноморської лихоманки; пірин-асоційованого автозапалення з нейтрофільним дерматозом; дефіциту мевалонаткінази; PSTPIP1-асоційованих запальних захворювань; синдрому періодичної лихоманки, імунодефіциту і тромбоцитопенії; неонатальної цитопенії з дисгемопоезом, автозапаленням, висипкою та гемофагоцитарним лімфогістіоцитозом; дефіциту антагоніста рецептора IL-1; дефіциту антагоніста рецептора IL-36; синдрому втрати рецептора IL-1 до антагоніста рецептора IL-1 тощо.

Systemic autoinflammatory diseases (SAIDs) are considered dysregulation disorders of the innate immune system characterized by systemic sterile inflammation independent of infection and autoreactive antibodies or antigen-specific T cells. Autoinflammation is often mediated by inflammasomes; accordingly, inflammasomopathies and other enhanced interleukin (IL) 1 signaling syndromes represent a major classification group of SAIDs. Inflammasomes differ by the type of intracellular receptor which acts as a scaffold protein for the entire complex. Specifically, pyrin is one of the main intracellular sensor proteins that can initiate the formation of inflammasomes. This scientific review is the second in a series of publications jointly aiming to increase medical professionals’ awareness of SAIDs in children. It focuses on the current scientific understanding of pyrin inflammasomopathies which represent a significant cluster of all inflammasomopathies and other enhanced IL-1 signaling syndromes. We performed a focused search over the Web of Science, Scopus, PubMed Central®, Google Scholar databases over the past 10 years using the keywords “autoinflammatory diseases”, “autoinflammation”, “inflammasomopathies”, “pyrin”. The work presents an overview of inflammasomopathies, discusses the immunobiological features of the sensor protein pyrin and pyrin inflammasomes including cellular expression and molecular mechanisms of their activation and signal limitation. The review also presents the clinical and pathogenetic characteristics of the genetically determined pyrin inflammasomopathies and other enhanced IL-1 signaling syndromes: familial Mediterranean fever; pyrin-associated autoinflammation with neutrophilic dermatosis; mevalonate kinase deficiency; PSTPIP1-associated inflammatory diseases; periodic fever, immunodeficiency and thrombocytopenia syndrome; neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and hemophagocytic lymphohistiocytosis; deficiency of IL-1 receptor antagonist; deficiency of IL-36 receptor antagonist; loss of IL-1 receptor to IL-1 receptor antagonist syndrome.


Ключевые слова

автозапальні захворювання; інфламасомопатії; пірин; інтерлейкін-1; сімейна середземноморська лихоманка; огляд

autoinflammatory diseases; inflammasomopathies; pyrin; interleukin 1; familial Mediterranean fever; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol. 2020 Nov;146(5):925-937. doi: 10.1016/j.jaci.2020.08.017.
2. Toplak N, Frenkel J, Ozen S, Lachmann HJ, et al. An international registry on autoinflammatory diseases: the Eurofever experience. Ann Rheum Dis. 2012 Jul;71(7):1177-82. doi: 10.1136/annrheumdis-2011-200549.
3. de Jesus AA, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol. 2013 Jun;147(3):155-74. doi: 10.1016/j.clim.2013.03.016.
4. Simon A, van der Meer JW, Drenth JP. Familial Mediterranean fever — a not so unusual cause of abdominal pain. Best Pract Res Clin Gastroenterol. 2005 Apr;19(2):199-213. doi: 10.1016/j.bpg.2004.11.009.
5. Haas SL, Lohse P, Schmitt WH, et al. Severe TNF receptor-associated periodic syndrome due to 2 TNFRSF1A mutations including a new F60V substitution. Gastroenterology. 2006 Jan;130(1):172-8. doi: 10.1053/j.gastro.2005.09.014.
6. Stojanov S, McDermott MF. The tumour necrosis factor receptor-associated periodic syndrome: current concepts. Expert Rev Mol Med. 2005 Oct 10;7(22):1-18. doi: 10.1017/S1462399405009749.
7. Krainer J, Siebenhandl S, Weinhäusel A. Systemic autoinflammatory diseases. J Autoimmun. 2020 May;109:102421. doi: 10.1016/j.jaut.2020.102421.
8. Rood JE, Behrens EM. Inherited Autoinflammatory Syndromes. Annu Rev Pathol. 2022 Jan 24;17:227-249. doi: 10.1146/annurev-pathmechdis-030121-041528.
9. Li Y, Yu M, Lu M. Pathophysiology, clinical manifestations and current management of IL-1 mediated monogenic systemic autoinflammatory diseases, a literature review. Pediatr Rheumatol Online J. 2022 Oct 17;20(1):90. doi: 10.1186/s12969-022-00728-0.
10. Hoffman HM, Broderick L. The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol. 2016 Jul;138(1):3-14. doi: 10.1016/j.jaci.2016.05.001.
11. Kul Cinar O, Putland A, Wynne K, Eleftheriou D, Brogan PA. Hereditary Systemic Autoinflammatory Diseases: Therapeutic Stratification. Front Pediatr. 2022 Apr 28;10:867679. doi: 10.3389/fped.2022.867679.
12. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The Pyrin Inflammasome in Health and Disease. Front Immunol. 2019 Aug 7;10:1745. doi: 10.3389/fimmu.2019.01745.
13. Havnaer A, Han G. Autoinflammatory Disorders: A Review and Update on Pathogenesis and Treatment. Am J Clin Dermatol. 2019 Aug;20(4):539-564. doi: 10.1007/s40257-019-00440-y.
14. Akdis M, Aab A, Altunbulakli C, Azkur K, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016 Oct;138(4):984-1010. doi: 10.1016/j.jaci.2016.06.033.
15. Zhou L, Todorovic V. Interleukin-36: Structure, Signaling and Function. Adv Exp Med Biol. 2021;21:191-210. doi: 10.1007/5584_2020_488. 
16. Ніколаєнко В.Б. Алергічні хвороби та автоімунні стани в дітей — сучасні підходи до діагностики та лікування. Укр. мед. часопис. 2020;1(135):38-45.
17. An J, Marwaha A, Laxer RM. Autoinflammatory Diseases: A Review. J Rheumatol. 2024 Sep 1;51(9):848-861. doi: 10.3899/jrheum.2023-1209.
18. Lin B, Goldbach-Mansky R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. J Allergy Clin Immunol. 2022 Mar;149(3):819-832. doi: 10.1016/j.jaci.2021.10.027.
19. de Jesus AA, Goldbach-Mansky R. Genetically defined autoinflammatory diseases. Oral Dis. 2016 Oct;22(7):591-604. doi: 10.1111/odi.12448.
20. Боярчук О.Р., Волянська Л.А., Ковальчук Т.А., Кінаш М.І. Артрити при первинних імунодефіцитах. Біль. Суглоби. Хребет. 2017;7:15-20. doi: 10.22141/2224-1507.7.1.2017.102433.
21. Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014 Sep 11;513(7517):237-41. doi: 10.1038/nature13449.
22. La Bella S, Di Ludovico A, Di Donato G, et al. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol. 2024 Jan 5;14:1341680. doi: 10.3389/fimmu.2023.1341680.
23. Moghaddas F. Monogenic autoinflammatory disorders: beyond the periodic fever. Intern Med J. 2020 Feb;50(2):151-164. doi: 10.1111/imj.14414.
24. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016 Aug;17(8):914-21. doi: 10.1038/ni.3457.
25. Jorch SK, McNally A, Berger P, et al. Complex regulation of alarmins S100A8/A9 and secretion via gasdermin D pores exacerbates autoinflammation in familial Mediterranean fever. J Allergy Clin Immunol. 2023 Jul;152(1):230-243. doi: 10.1016/j.jaci.2023.01.037. 
26. Wu D, Zhang Z, Jiang X, et al. Inflammasome Meets Centrosome: Understanding the Emerging Role of Centrosome in Controlling Inflammasome Activation. Front Immunol. 2022 Feb 24;13:826106. doi: 10.3389/fimmu.2022.826106.
27. Hohmann T, Dehghani F. The Cytoskeleton — A Complex Interacting Meshwork. Cells. 2019 Apr 18;8(4):362. doi: 10.3390/cells8040362.
28. Kim ML, Chae JJ, Park YH, et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J Exp Med. 2015 Jun 1;212(6):927-38. doi: 10.1084/jem.20142384.
29. Kawakami A, Endo Y, Koga T, Yoshiura KI, Migita K. Autoinflammatory disease: clinical perspectives and therapeutic strategies. Inflamm Regen. 2022 Dec 2;42(1):37. doi: 10.1186/s41232-022-00217-7.
30. Giancane G, Ter Haar NM, Wulffraat N, et al. Evidence-based recommendations for genetic diagnosis of familial Mediterranean fever. Ann Rheum Dis. 2015 Apr;74(4):635-41. doi: 10.1136/annrheumdis-2014-206844.
31. El Hasbani G, Jawad A, Uthman I. Update on the management of colchicine resistant Familial Mediterranean Fever (FMF). Orphanet J Rare Dis. 2019 Oct 15;14(1):224. doi: 10.1186/s13023-019-1201-7.
32. Zhang J, Lee PY, Aksentijevich I, Zhou Q. How to Build a Fire: The Genetics of Autoinflammatory Diseases. Annu Rev Genet. 2023 Nov 27;57:245-274. doi: 10.1146/annurev-genet-030123-084224.
33. Alghamdi M. Familial Mediterranean fever, review of the literature. Clin Rheumatol. 2017 Aug;36(8):1707-1713. doi: 10.1007/s10067-017-3715-5.
34. Чернишова Л.І., Волоха А.П., Степановський Ю.С. та ін. Сімейна середземноморська лихоманка. Сучасна педіатрія. 2015;4(68):91-95. doi: 10.15574/SP.2015.68.91.
35. Van Gorp H, Saavedra PH, de Vasconcelos NM, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc Natl Acad Sci USA. 2016 Dec 13;113(50):14384-14389. doi: 10.1073/pnas.1613156113.
36. Park YH, Remmers EF, Lee W, et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat Immunol. 2020 Aug;21(8):857-867. doi: 10.1038/s41590-020-0705-6.
37. Ratner D, Orning MP, Proulx MK, et al. The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathog. 2016 Dec 2;12(12):e1006035. doi: 10.1371/journal.ppat.1006035.
38. Chung LK, Park YH, Zheng Y, et al. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe. 2016 Sep 14;20(3):296-306. doi: 10.1016/j.chom.2016.07.018.
39. Gattorno M, Hofer M, Federici S, et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis. 2019 Aug;78(8):1025-1032. doi: 10.1136/annrheumdis-2019-215048.
40. Federici S, Sormani MP, Ozen S, et al. Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Dis. 2015 May;74(5):799-805. doi: 10.1136/annrheumdis-2014-206580.
41. Moghaddas F, Llamas R, De Nardo D, et al. A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017 Dec;76(12):2085-2094. doi: 10.1136/annrheumdis-2017-211473.
42. Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016 Mar 30;8(332):332ra45. doi: 10.1126/scitranslmed.aaf1471.
43. Magnotti F, Chirita D, Dalmon S, et al. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep. 2022 Oct 11;41(2):111472. doi: 10.1016/j.celrep.2022.111472.
44. Akula MK, Shi M, Jiang Z, et al. Control of the innate immune response by the mevalonate pathway. Nat Immunol. 2016 Aug;17(8):922-9. doi: 10.1038/ni.3487.
45. Munoz MA, Jurczyluk J, Simon A, et al. Defective Protein Preny–lation in a Spectrum of Patients With Mevalonate Kinase Deficiency. Front Immunol. 2019 Aug 14;10:1900. doi: 10.3389/fimmu.2019.01900.
46. Maalouly M, Saade S, Kurban M. Autoinflammatory diseases: what is behind them and what is new? Dermatol Reports. 2022 Dec 29;15(2):9625. doi: 10.4081/dr.2023.9625.
47. Carapito R, Carapito C, Morlon A, et al. Multi-OMICS analyses unveil STAT1 as a potential modifier gene in mevalonate kinase deficiency. Ann Rheum Dis. 2018 Nov;77(11):1675-1687. doi: 10.1136/annrheumdis-2018-213524.
48. Ter Haar NM, Jeyaratnam J, Lachmann HJ, et al. The Phenotype and Genotype of Mevalonate Kinase Deficiency: A Series of 114 Cases From the Eurofever Registry. Arthritis Rheumatol. 2016 Nov;68(11):2795-2805. doi: 10.1002/art.39763.
49. Romano M, Arici ZS, Piskin D, et al. The 2021 EULAR/American College of Rheumatology Points to Consider for Diagnosis, Management and Monitoring of the Interleukin-1 Mediated Autoinflammatory Diseases: Cryopyrin-Associated Periodic Syndromes, Tumour Necrosis Factor Receptor-Associated Periodic Syndrome, Mevalonate Kinase Deficiency, and Deficiency of the Interleukin-1 Receptor Antagonist. Arthritis Rheumatol. 2022 Jul;74(7):1102-1121. doi: 10.1002/art.42139.
50. Touitou I. Twists and turns of the genetic story of mevalonate kinase-associated diseases: A review. Genes Dis. 2021 Jun 9;9(4):1000-1007. doi: 10.1016/j.gendis.2021.05.002.
51. Yıldız Ç, Gezgin Yıldırım D, Inci A, et al. A possibly new autoinflammatory disease due to compound heterozygous phosphomevalonate kinase gene mutation. Joint Bone Spine. 2023 Jan;90(1):105490. doi: 10.1016/j.jbspin.2022.105490.
52. Maitrepierre F, Marzano AV, Lipsker D. A Unified Concept of Acne in the PAPA Spectrum Disorders. Dermatology. 2021;237(5):827-834. doi: 10.1159/000509874.
53. Holzinger D, Fassl SK, de Jager W, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015 Nov;136(5):1337-45. doi: 10.1016/j.jaci.2015.04.016.
54. Mejbri M, Renella R, Candotti F, et al. PSTPIP1-Associated Myeloid-Related Proteinemia Inflammatory (PAMI) Syndrome: A Systematic Review. Genes (Basel). 2023 Aug 19;14(8):1655. doi: 10.3390/genes14081655.
55. Saternus R, Schwingel J, Müller CSL, Vogt T, Reichrath J. Ancient friends, revisited: Systematic review and case report of pyoderma gangrenosum-associated autoinflammatory syndromes. J Transl Autoimmun. 2020 Nov 20;3:100071. doi: 10.1016/j.jtauto.2020.100071.
56. Schwob E, Bessis D, Boursier G, et al. PASS: a rare syndrome within the autoinflammatory diseases that still lacks a genetic marker. J Eur Acad Dermatol Venereol. 2020 Sep;34(9):e478-e480. doi: 10.1111/jdv.16385.
57. Standing AS, Malinova D, Hong Y, et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med. 2017 Jan;214(1):59-71. doi: 10.1084/jem.20161228.
58. Kim ML, Chae JJ, Park YH, et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J Exp Med. 2015 Jun 1;212(6):927-38. doi: 10.1084/jem.20142384.
59. Etzioni A, Ochs HD. Lazy Leukocyte Syndrome-an Enigma Finally Solved? J Clin Immunol. 2020 Jan;40(1):9-12. doi: 10.1007/s10875-019-00718-0.
60. Lam MT, Coppola S, Krumbach OHF, et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med. 2019 Dec 2;216(12):2778-2799. doi: 10.1084/jem.20190147.
61. Nishitani-Isa M, Mukai K, Honda Y, et al. Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. J Exp Med. 2022 Jun 6;219(6):e20211889. doi: 10.1084/jem.20211889.
62. Bekhouche B, Tourville A, Ravichandran Y, et al. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J Allergy Clin Immunol. 2020 Nov;146(5):1201-1204.e8. doi: 10.1016/j.jaci.2020.03.020.
63. Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014 Sep 11;513(7517):237-41. doi: 10.1038/nature13449.
64. Gernez Y, de Jesus AA, Alsaleem H, et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J Allergy Clin Immunol. 2019 Oct;144(4):1122-1125.e6. doi: 10.1016/j.jaci.2019.06.017.
65. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009 Jun 4;360(23):2426-37. doi: 10.1056/NEJMoa0807865.
66. Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011 Aug 18;365(7):620-8. doi: 10.1056/NEJMoa1013068.
67. Tauber M, Bal E, Pei XY, et al. IL36RN Mutations Affect Protein Expression and Function: A Basis for Genotype-Phenotype Correlation in Pustular Diseases. J Invest Dermatol. 2016 Sep;136(9):1811-1819. doi: 10.1016/j.jid.2016.04.038.
68. Wang Y, Wang J, Zheng W, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity. 2023 Jul 11;56(7):1485-1501.e7. doi: 10.1016/j.immuni.2023.05.014.
69. Belkaya S, Michailidis E, Korol CB, et al. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J Exp Med. 2019 Aug 5;216(8):1777-1790. doi: 10.1084/jem.20190669.

Вернуться к номеру