Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Коморбідний ендокринологічний пацієнт

Коморбідний ендокринологічний пацієнт

Международный эндокринологический журнал Том 20, №6, 2024

Вернуться к номеру

Посттравматичний стресовий розлад і метаболічний синдром: роль деяких антиоксидантів у лікуванні

Авторы: Сергієнко В.О. (1), Олійник А.Ю. (1), Павловський Я.І. (1), Крук О.С. (2), Сергієнко О.О. (1)
(1) - Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
(2) - Перше територіальне медичне об’єднання міста Львова, м. Львів, Україна

Рубрики: Эндокринология

Разделы: Справочник специалиста

Версия для печати


Резюме

Основою патогенезу серцево-судинних, онкологічних, метаболічних захворювань, хронічного запалення низької інтенсивності (ХЗНІ) та багатьох інших розладів є дисбаланс між прооксидантами і системою антиоксидантного захисту. Вважається, що в основі зв’язку між посттравматичним стресовим розладом (ПТСР) і метаболічним синдромом (МС) є оксидантний стрес (ОС), підвищена активність вегетативної нервової системи, активація синтезу глюкокортикоїдів або імунологічна дисрегуляція. Більше того, патофізіологічні зміни шляхів системного ХЗНІ, які виникають внаслідок модифікацій у реактивності рецепторів глюкокортикоїдів (вторинних до емоційного та фізіологічного збудження), можуть бути основою для неадекватної соціальної поведінки, що відповідає ПТСР та проявам МС. Нещодавно з’явилися дані, які свідчать про те, що важлива роль в патогенезі ПТСР належить поєднанню високого рівня системного ОС із активацією ХЗНІ. З іншого боку, ПТСР — це тип рецидивуючої та довготривалої травми, яка посилює ОС і прискорює старіння клітин. ХЗНІ супроводжується вивільненням активних форм кисню та азоту, прозапальних цитокінів та інших біологічно активних речовин, що викликають ОС. Метою цього огляду було обговорити роль окремих антиоксидантів, зокрема поліфенолів, флавоноїдів, каротиноїдів, N-ацетилцистеїну, мелатоніну, L-аргініну, вітамінів С і Е, цинку, міді та селену, у профілактиці/лікуванні коморбідної патології ПТСР і МС, а також проаналізувати нові тенденції та напрямки майбутніх досліджень. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використані ключові слова «посттравматичний стресовий розлад», «метаболічний синдром», «антиоксиданти». Для виявлення результатів дослідження, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

The basis for the pathogenesis of cardiovascular, cancer, metabolic diseases, low-grade chronic inflammation (LGCI) and many other disorders is an imbalance between prooxidants and the antioxidant defense system. It is believed that the link between post-traumatic stress disorder (PTSD) and metabolic syndrome (MetS) is based on oxidative stress (OS), increased autonomic nervous system activity, glucocorticoid synthesis activation, or immunological dysregulation. Moreover, pathophysiological changes in the systemic LGCI pathways that result from modifications in glucocorticoid receptor reactivity (secondary to emotional and physiological arousal) may be the basis for inappropriate social behavior consistent with PTSD and MetS manifestations. Recently, evidence has emerged suggesting that a combination of high levels of systemic OS and activation of LGCI plays an important role in the pathogenesis of PTSD. On the other hand, PTSD is a type of recurrent and long-term trauma that exacerbates OS and accele­rates cellular aging. LGCI is accompanied by the release of reactive oxygen and nitrogen species, proinflammatory cytokines, and other biologically active substances that cause OS. The purpose of this review was to discuss the role of individual antioxidants, in particular polyphenols, flavonoids, carotenoids, N-acetylcysteine, melatonin, L-arginine, C and E vitamins, zinc, copper, and selenium, in the prevention/treatment of comorbid pathology of PTSD and MetS, as well as to analyze new trends and directions for future research. The search was conducted in Scopus, Science Direct (from Else­vier) and PubMed, including MEDLINE databases. The keywords used were “post-traumatic stress disorder,” “metabolic syndrome,” and “antioxidants.” To identify research results that could not be found during the online search, a manual search of the bibliography of publications was used.


Ключевые слова

посттравматичний стресовий розлад; метаболічний синдром; антиоксиданти; огляд літератури

post-traumatic stress disorder; metabolic syndrome; antioxidants; literature review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. Serhiyenko V, Holzmann K, Holota S, et al. A. An exploratory study of physiological and biochemical parameters to identify simple, robust and relevant biomarkers for therapeutic interventions for PTSD: Study rationale, key elements of design and a context of war in Ukraine. Proc Shevchenko Sci Soc Med Sci. 2022 Dec;69(2):1-12. doi: 10.25040/ntsh2022.02.14].
  2. Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol. 2016 Oct;284(Pt B):220-229. doi: 10.1016/j.expneurol.2016.05.038.
  3. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autonomic nervous system. Endokrynologia. 2023 Dec;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
  4. Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic syndrome: A narrative review from the oxidative stress to the management of related diseases. Antioxidants (Basel). 2023 Dec 8;12(12):2091. doi: 10.3390/antiox12122091.
  5. Kim TD, Lee S, Yoon S. Inflammation in post-traumatic stress disorder (PTSD): A review of potential correlates of PTSD with a neurological perspective. Antioxidants (Basel). 2020 Jan 26;9(2):107. doi: 10.3390/antiox9020107.
  6. Peruzzolo TL, Pinto JV, Roza TH, et al. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry. 2022 Aug;27(8):3150-3163. doi: 10.1038/s41380-022-01564-0.
  7. Karanikas E, Daskalakis NP, Agorastos A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: A comprehensive review. Brain Sci. 2021 May 29;11(6):723. doi: 10.3390/brainsci11060723.
  8. Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New metabolic, digestive, and oxidative stress-related manifestations associated with posttraumatic stress disorder. Oxid Med Cell Longev. 2021 Dec 20;2021:5599265. doi: 10.1155/2021/5599265.
  9. Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 May 10;11:1158198. doi: 10.3389/fchem.2023.1158198.
  10. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024 May;98(5):1323-1367. doi: 10.1007/s00204-024-03696-4.
  11. Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials (Basel). 2021;14(15):4135. doi: 10.3390/ma14154135.
  12. Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants (Basel). 2021 Jan 30;10(2):201. doi: 10.3390/antiox10020201.
  13. Pruteanu LL, Bailey DS, Grădinaru AC, Jäntschi L. The biochemistry and effectiveness of antioxidants in food, fruits, and marine algae. Antioxidants (Basel). 2023 Apr 2;12(4):860. doi: 10.3390/antiox12040860.
  14. Taira J. Oxidative stress modulators and functional foods. Antioxidants (Basel). 2021 Jan 29;10(2):191. doi: 10.3390/antiox10020191.
  15. Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J Mol Sci. 2024 Mar 13;25(6):3264. doi: 10.3390/ijms25063264.
  16. Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, et al. Phenolic compounds promote diversity of gut microbiota and maintain colonic health. Dig Dis Sci. 2021 Oct;66(10):3270-3289. doi: 10.1007/s10620-020-06676-7.
  17. Fan D, Liu C, Zhang Z, et al. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease. Molecules. 2022 Nov 3;27(21):7524. doi: 10.3390/molecules27217524.
  18. Faisal Z, Mazhar A, Batool SA, et al. Exploring the multimodal health-promoting properties of resveratrol: A comprehensive review. Food Sci Nutr. 2024 Jan 28;12(4):2240-2258. doi: 10.1002/fsn3.3933.
  19. Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta GP, Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol. 2023 Jul 1;242(Pt 1):124581. doi: 10.1016/j.ijbiomac.2023.124581.
  20. Maissan P, Mooij EJ, Barberis M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review. Biology (Basel). 2021 Mar 4;10(3):194. doi: 10.3390/biology10030194.
  21. Razick DI, Akhtar M, Wen J, et al. The Role of Sirtuin 1 (SIRT1) in neurodegeneration. Cureus. 2023 Jun 15;15(6):e40463. doi: 10.7759/cureus.40463.
  22. Carrico C, Cruz A, Walter M, et al. Coenzyme A binding sites induce proximal acylation across protein families. Sci Rep. 2023 Mar 28;13(1):5029. doi: 10.1038/s41598-023-31900-5.
  23. Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022 Mar 11;13:831168. doi: 10.3389/fimmu.2022.831168.
  24. Xu G, Ma Y, Jin J, Wang X. Activation of AMPK/p38/Nrf2 is involved in resveratrol alleviating myocardial ischemia-reperfusion injury in diabetic rats as an endogenous antioxidant stress feedback. Ann Transl Med. 2022 Aug;10(16):890. doi: 10.21037/atm-22-3789.
  25. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul. 2022;56(4):284-294. doi: 10.2478/enr-2022-0031.
  26. Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med. 2023 Dec 8;21(1):892. doi: 10.1186/s12967-023-04772-6.
  27. Shaito A, Al-Mansoob M, Ahmad SMS, et al. Resveratrol-mediated regulation of mitochondria biogenesis-associated pathways in neurodegenerative diseases: Molecular insights and potential therapeutic applications. Curr Neuropharmacol. 2023;21(5):1184-1201. doi: 10.2174/1570159X20666221012122855.
  28. Molaei A, Molaei E, Hayes AW, Karimi G. Mas receptor: a potential strategy in the management of ischemic cardiovascular diseases. Cell Cycle. 2023 Jul;22(13):1654-1674. doi: 10.1080/15384101.2023.2228089.
  29. Gostimirovic M, Rajkovic J, Bukarica A, Simanovic J, Gojkovic-Bukarica L. Resveratrol and gut microbiota synergy: Preventive and therapeutic effects. Int J Mol Sci. 2023 Dec 17;24(24):17573. doi: 10.3390/ijms242417573.
  30. Sharebiani H, Mokaram M, Mirghani M, Fazeli B, Stanek A. The effects of antioxidant supplementation on the pathologic mechanisms of metabolic syndrome and cardiovascular disease development. Nutrients. 2024 May 27;16(11):1641. doi: 10.3390/nu16111641.
  31. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Omega-3 polyunsaturated fatty acids in the treatment of diabetic cardiovascular autonomic neuropathy: A review. In: Moore SJ, ed. Omega-3: Dietary sources, biochemistry and impact on human health. New York: Nova Science Publishers, 2017: 79-154. 
  32. Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol. 2022 Sep 5;13:948889. doi: 10.3389/fphar.2022.948889.
  33. Gocmez SS, Şahin TD, Yazir Y, et al. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol Behav. 2019 Mar 15;201:198-207. doi: 10.1016/j.physbeh.2018.12.012.
  34. Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int J Mol Sci. 2021 Jan 10;22(2):630. doi: 10.3390/ijms22020630.
  35. Wiciński M, Erdmann J, Nowacka A, et al. Natural phytoche–micals as SIRT activators-Focus on potential biochemical mechanisms. Nutrients. 2023 Aug 14;15(16):3578. doi: 10.3390/nu15163578.
  36. Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017 Dec 20;18(12):2772. doi: 10.3390/ijms18122772.
  37. Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev. 2024 Mar 20:nuae025. doi: 10.1093/nutrit/nuae025.
  38. Danışman B, Ercan Kelek S, Aslan M. Resveratrol in neurodegeneration, in neurodegenerative diseases, and in the redox bio–logy of the mitochondria. Psychiatry Clin Psychopharmacol. 2023 Jun 1;33(2):147-155. doi: 10.5152/pcp.2023.23633.
  39. Mathew AA, Panonnummal R. 'Magnesium' — the master cation — as a drug-possibilities and evidences. Biometals. 2021 Oct;34(5):955-986. doi: 10.1007/s10534-021-00328-7.
  40. Altobelli GG, Van Noorden S, Balato A, Cimini V. Copper/Zinc superoxide dismutase in human skin: Current knowled–ge. Front Med (Lausanne). 2020 May 12;7:183. doi: 10.3389/fmed.2020.00183.
  41. Sajjadi SS, Foshati S, Haddadian-Khouzani S, Rouhani MH. The role of selenium in depression: a systematic review and meta-analysis of human observational and interventional studies. Sci Rep. 2022 Jan 20;12(1):1045. doi: 10.1038/s41598-022-05078-1.
  42. Lin MC, Liu CC, Lin YC, Hsu CW. Epigallocatechin gallate modulates essential elements, Zn/Cu ratio, hazardous metal, lipid peroxidation, and antioxidant activity in the brain cortex during cerebral ischemia. Antioxidants (Basel). 2022 Feb 16;11(2):396. doi: 10.3390/antiox11020396.
  43. Gao Y, Meng Q, Qin J, Zhao Q, Shi B. Resveratrol allevia–tes oxidative stress induced by oxidized soybean oil and improves gut function via changing gut microbiota in weaned piglets. J Anim Sci Biotechnol. 2023 Apr 7;14(1):54. doi: 10.1186/s40104-023-00851-2.
  44. Gregório BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr Pharm Des. 2016;22(7):859-69. doi: 10.2174/1381612822666151209152352.
  45. Xie J, Song W, Liang X, et al. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed Pharmacother. 2020 Jul;127:110147. doi: 10.1016/j.biopha.2020.110147.
  46. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res. 2021 Oct;35(10):5352-5364. doi: 10.1002/ptr.7144.
  47. Papakyriakopoulou P, Velidakis N, Khattab E, Valsami G, Korakianitis I, Kadoglou NP. Potential pharmaceutical applications of quercetin in cardiovascular diseases. Pharmaceuticals (Basel). 2022 Aug 18;15(8):1019. doi: 10.3390/ph15081019.
  48. Muselin F, Cristina RT, Dumitrescu E, et al. Quercetin beneficial role in the homeostatic variation of certain trace elements in dyslipidemic Mice. Evid Based Complement Alternat Med. 2022 Mar 11;2022:3299505. doi: 10.1155/2022/3299505.
  49. Yi H, Peng H, Wu X, et al. The therapeutic effects and mecha–nisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid Med Cell Longev. 2021 Jun 23;2021:6678662. doi: 10.1155/2021/6678662.
  50. Gao XR, Chen Z, Fang K, Xu JX, Ge JF. Protective effect of quercetin against the metabolic dysfunction of glucose and lipids and its associated learning and memory impairments in NAFLD rats. Lipids Health Dis. 2021 Nov 17;20(1):164. doi: 10.1186/s12944-021-01590-x.
  51. Zhang W, Zheng Y, Yan F, Dong M, Ren Y. Research progress of quercetin in cardiovascular disease. Front Cardiovasc Med. 2023 Nov 16;10:1203713. doi: 10.3389/fcvm.2023.1203713.
  52. Agrawal K, Chakraborty P, Dewanjee S, et al. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev. 2023 Jan;144:104955. doi: 10.1016/j.neubiorev.2022.104955.
  53. Wróbel-Biedrawa D, Grabowska K, Galanty A, Sobolewska D, Podolak I. A Flavonoid on the brain: Quercetin as a potential therapeutic agent in central nervous system disorders. Life (Basel). 2022 Apr 15;12(4):591. doi: 10.3390/life12040591.
  54. Bellavite P. Neuroprotective potentials of flavonoids: experimental studies and mechanisms of action. Antioxidants (Basel). 2023 Jan 27;12(2):280. doi: 10.3390/antiox12020280.
  55. Aghababaei F, Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals (Basel). 2023 Jul 18;16(7):1020. doi: 10.3390/ph16071020.
  56. Beydoun MA, Chen X, Jha K, Beydoun HA, Zonderman AB, Canas JA. Carotenoids, vitamin A, and their association with the metabolic syndrome: a systematic review and meta-analysis. Nutr Rev. 2019 Jan 1;77(1):32-45. doi: 10.1093/nutrit/nuy044.
  57. Brnoliakova Z, Knezl V, Sotnikova R, Gasparova Z. Metabolic syndrome in hypertriglyceridemic rats: Effects of antioxidants. Physiol Res. 2023 Jun 9;72(S1):S31-S35. doi: 10.33549/physiolres.935021.
  58. Iqbal WA, Mendes I, Finney K, Oxley A, Lietz G. Reduced plasma carotenoids in individuals suffering from metabolic diseases with disturbances in lipid metabolism: a systematic review and meta-analysis of observational studies. Int J Food Sci Nutr. 2021 Nov;72(7):879-891. doi: 10.1080/09637486.2021.1882962.
  59. Bouayed J, Vahid F. Carotenoid pattern intake and relation to metabolic status, risk and syndrome, and its components — divergent findings from the ORISCAV-LUX-2 survey. Br J Nutr. 2024 Apr 19:1-17. doi: 10.1017/S0007114524000758.
  60. Li F, Xiang H, Lu J, Chen Z, Huang C, Yuan X. Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol Behav. 2020 Oct 1;224:113026. doi: 10.1016/j.physbeh.2020.113026.
  61. Rasmus P, Kozłowska E. Antioxidant and anti-inflammatory effects of carotenoids in mood disorders: An overview. Antioxidants (Basel). 2023 Mar 9;12(3):676. doi: 10.3390/antiox12030676.
  62. Panahi Y, Ostadmohammadi V, Raygan F, Sharif MR, Sahebkar A. The effects of N-acetylcysteine administration on metabolic status and serum adiponectin levels in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. J. Funct. Foods. 2022 Dec;99:105299. doi: 10.1016/j.jff.2022.105299.
  63. Yahya AZ, Taqa GA, Alkataan MA. Evaluation of the effects of n-acetylcysteine on serum glucose, lipid profile, and body weight in rats with fructose-induced metabolic syndrome. Mil Med Sci Lett. 2023 Jan;92(1):194-207. doi: 10.31482/mmsl.2022.039.
  64. Aguilar M, Alberti KGMM, Amiel SA, et al. Leitfaden zu typ-2-diabetes mellitus / Guide for type 2 diabetes mellitus (Review). Diabetes und Stoffwechsel. 2000 Mar 20;9(2):104-136.
  65. Serhiyenko V, Serhiyenko A, Segin V, Serhiyenko L. Association of arterial stiffness, N-terminal pro-brain natriuretic peptide, insulin resistance, and left ventricular diastolic dysfunction with diabetic cardiac autonomic neuropathy. Vessel Plus. 2022;6:11. doi: 10.20517/2574-1209.2021.83. 
  66. Rani M, Aggarwal R, Vohra K. Effect of N-acetylcysteine on metabolic profile in metabolic syndrome patients. Metab Syndr Relat Disord. 2020 Sep;18(7):341-346. doi: 10.1089/met.2020.0017.
  67. Maier A, Dharan A, Oliver G, et al. A multi-centre, double-blind, 12-week, randomized, placebo-controlled trial to assess the efficacy of adjunctive N-Acetylcysteine for treatment-resistant PTSD: a study protocol. BMC Psychiatry. 2020 Aug 6;20(1):397. doi: 10.1186/s12888-020-02793-9.
  68. Imenshahidi M, Karimi G, Hosseinzadeh H. Effects of melatonin on cardiovascular risk factors and metabolic syndrome: A comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2020 Apr;393(4):521-536. doi: 10.1007/s00210-020-01822-4.
  69. Otamas A, Grant PJ, Ajjan RA. Diabetes and atherothrombosis: The circadian rhythm and role of melatonin in vascular protection. Diab Vasc Dis Res. 2020 Mar-Apr;17(3):1479164120920582. doi: 10.1177/1479164120920582.
  70. Serhiyenko VA, Sehin VB, Pankiv VI, Serhiyenko AA. Post-traumatic stress disorder, dyssomnias, and metabolic syndrome. Mìžnarodnij endokrinologìčnij žurnal (Ukraine). 2024 Mar;20(1):58-67. doi: 10.22141/2224-0721.20.1.2024.1359. 
  71. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and chronic low-grade inflammation: A narrative review. Problemi Endocrinnoi Patologii. 2024 Mar 14;81(1):77-83. doi: 10.21856/j-PEP.2024.1.10.
  72. Szlas A, Kurek JM, Krejpcio Z. The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism-A review. Nutrients. 2022 Feb 24;14(5):961. doi: 10.3390/nu14050961.
  73. Gouveia HJCB, Urquiza-Martínez MV, Manhães-de-Castro R, et al. Effects of the treatment with flavonoids on metabolic syndrome components in humans: A systematic review focusing on mechanisms of action. Int J Mol Sci. 2022 Jul 28;23(15):8344. doi: 10.3390/ijms23158344.
  74. Serhiyenko VA, Serhiyenko AA Diabetic cardiac autonomic neuropathy. In: Saldaña J.R., editors. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues. Basel: Springer, Cham. Springer Nature Switzerland AG. 2023, Section 53. P. 939-966. doi: 10.1007/978-3-031-25519-9_57.
  75. Bersani FS, Mellon SH, Lindqvist D, et al. Novel pharmacological targets for combat PTSD-metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil Med. 2020 Jan 7;185(Suppl 1):311-318. doi: 10.1093/milmed/usz260.
  76. Nersesyan A, Mišík M, Cherkas A, et al. Use of micronucleus experiments for the detection of human cancer risks: A brief overview. Proc Shevchenko Sci Soc Med Sci. 2021 Dec 12;65(2):50-58. doi: 10.25040/ntsh2021.02.05.
  77. Pervin M, Unno K, Konishi T, Nakamura Y. L-arginine exerts excellent anti-stress effects on stress-induced shortened lifespan, cognitive decline and depression. Int J Mol Sci. 2021 Jan 6;22(2):508. doi: 10.3390/ijms22020508.
  78. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022 Oct 7;11(10):1993. doi: 10.3390/antiox11101993.
  79. Luo X, Ng C, He J, et al. Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes. Mol Cell Endocrinol. 2022 Oct 1;556:111740. doi: 10.1016/j.mce.2022.111740.
  80. Guo H, Ding J, Liu Q, Li Y, Liang J, Zhang Y. Vitamin C and metabolic syndrome: A meta-analysis of observational studies. Front Nutr. 2021 Oct 8;8:728880. doi: 10.3389/fnut.2021.728880.
  81. Mirmiran P, Hosseini-Esfahani F, Esfandiar Z, Hosseinpour-Niazi S, Azizi F. Associations between dietary antioxidant intakes and cardiovascular disease. Sci Rep. 2022 Jan 27;12(1):1504. doi: 10.1038/s41598-022-05632-x.
  82. Alzoubi KH, Al-Dekah AM, Jaradat S, Alrabadi N. L-Carnitine prevents memory impairment induced by post-traumatic stress disorder. Restor Neurol Neurosci. 2022;40(1):53-61. doi: 10.3233/RNN-211191.
  83. Abdollahi S, Toupchian O, Jayedi A, Meyre D, Tam V, Soltani S. Zinc supplementation and body weight: A systematic review and dose-response meta-analysis of randomized controlled trials. Adv Nutr. 2020 Mar 1;11(2):398-411. doi: 10.1093/advances/nmz084.
  84. Barchielli G, Capperucci A, Tanini D. The role of selenium in pathologies: An updated review. Antioxidants (Basel). 2022 Jan 27;11(2):251. doi: 10.3390/antiox11020251.
  85. Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and arterial hypertension. Mìžnarodnij endokrinologìčnij žurnal. 2021;17(2):100-113. doi: 10.22141/2224-0721.17.2.2021.230573.
  86. Zielińska M, Łuszczki E, Dereń K. Dietary nutrient deficiencies and risk of depression (review article 2018-2023). Nutrients. 2023 May 23;15(11):2433. doi: 10.3390/nu15112433.
  87. Jia D, Liu L, Liu W, Li J, Jiang X, Xin Y. Copper metabolism and its role in diabetic complications: A review. Pharmacol Res. 2024 Aug;206:107264. doi: 10.1016/j.phrs.2024.107264.
  88. An Y, Li S, Huang X, Chen X, Shan H, Zhang M. The role of copper homeostasis in brain disease. Int J Mol Sci. 2022 Nov 10;23(22):13850. doi: 10.3390/ijms232213850.
  89. Shi Y, Zou Y, Shen Z, et al. Trace elements, PPARs, and metabolic syndrome. Int J Mol Sci. 2020 Apr 9;21(7):2612. doi: 10.3390/ijms21072612.
  90. Ejaz HW, Wang W, Lang M. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches. Int J Mol Sci. 2020 Oct 16;21(20):7660. doi: 10.3390/ijms21207660.
  91. Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Navascués LJ, Córdova Martínez A, Seco-Calvo J. The role of selenium mineral trace element in exercise: Antioxidant defense system, muscle performance, hormone response, and athletic performance. A Systematic Review. Nutrients. 2020 Jun 16;12(6):1790. doi: 10.3390/nu12061790.
  92. Schneider-Matyka D, Cybulska AM, Szkup M, et al. Selenium as a predictor of metabolic syndrome in middle age women. Aging (Albany NY). 2023 Mar 21;15(6):1734-1747. doi: 10.18632/aging.204590.
  93. Vicente-Zurdo D, Romero-Sánchez I, Rosales-Conrado N, León-González ME, Madrid Y. Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer's disease. Anal Bioanal Chem. 2020 Sep;412(24):6485-6497. doi: 10.1007/s00216-020-02644-2.
  94. Czaderny K. Risk factors for depression. New evidence on selenium deficiency and depressive disorders. Psychiatr Pol. 2020 Dec 31;54(6):1109-1121. doi: 10.12740/PP/112967.
  95. Turan E, Karaaslan O. The relationship between iodine and selenium levels with anxiety and depression in patients with euthyroid nodular goiter. Oman Med J. 2020 Jul 31;35(4):e161. doi: 10.5001/omj.2020.84.

Вернуться к номеру