Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Медицина неотложных состояний» Том 20, №6, 2024

Вернуться к номеру

Сучасне застосування штучного інтелекту при лапароскопічній холецистектомії

Авторы: Чуклін С.М., Чуклін С.С.
Медичний центр Святої Параскеви, м. Львів, Україна

Рубрики: Медицина неотложных состояний

Разделы: Справочник специалиста

Версия для печати


Резюме

Останні досягнення в галузі штучного інтелекту спричинили сплеск застосування комп’ютерного зору (КЗ) в аналізі хірургічного відео. Хірургічні ускладнення часто виникають через помилки в судженні та прийнятті рішень. При лапароскопічній холецистектомії для запобігання ушкодженню жовчних проток зазвичай рекомендується досягнення критичного погляду на безпеку. Однак показники ушкодження жовчних проток залишаються стабільними, імовірно, через непослідовне застосування або погане розуміння критичного погляду на безпеку. Досягнення в галузі штучного інтелекту зробили можливим навчання алгоритмів, які ідентифікують анатомію та інтерпретують хірургічне поле. Методи КЗ на основі штучного інтелекту можуть використовувати дані хірургічного відео для розробки автоматизованих інструментів підтримки прийняття рішень у реальному часі і систем навчання хірургів. Ефективність застосування КЗ при хірургічних процедурах все ще перебуває на стадії ранньої оцінки. В огляді подано найпоширеніші алгоритми глибокого навчання при КЗ і детально описано їх використання в чотирьох прикладних сценах, включно з розпізнаванням хірургічних фаз, анатомії, інструментів і дій при лапароскопічній холецистектомії. У базах даних MEDLINE, Scopus, IEEE Xplore було проведено пошук публікацій до 2024 року. Під час пошуку використовувалися ключові слова «лапароскопічна холецистектомія», «штучний інтелект». Описане на сьогодні застосування КЗ при лапароскопічній холецистектомії є обмеженим. Більшість поточних досліджень зосереджені на ідентифікації робочого процесу й анатомічної структури, у той час як ідентифікація інструментів і хірургічних дій все ще чекає на подальші прориви. Майбутні дослідження щодо використання КЗ при лапароскопічній холецистектомії повинні бути зосереджені на застосуванні в більшій кількості сценаріїв, таких як оцінка навичок хірурга і розробка більш ефективних моделей.

Recent advances in artificial intelligence (AI) have sparked a surge in the application of computer vision (CV) in surgical video analysis. Surgical complications often occur due to lapses in judgment and decision-making. In laparoscopic cholecystectomy, achievement of the critical view of safety is commonly advocated to prevent bile duct injuries. However, bile duct injuries rates remain stable, probably due to inconsistent application or a poor understanding of critical view of safety. Advances in AI have made it possible to train algorithms that identify anatomy and interpret the surgical field. AI-based CV techniques may leverage surgical video data to develop real-time automated decision support tools and surgeon training systems. The effectiveness of CV application in surgical procedures is still under early evaluation. The review considers the commonly used deep learning algorithms in CV and describes their usage in detail in four application scenes, including phase recognition, anatomy detection, instrument detection and action recognition in laparoscopic cholecystectomy. The MedLine, Scopus, and IEEE Xplore databases were searched for publications up to 2024. The keywords used in the search were “laparoscopic cholecystectomy”, “artificial intelligence”. The currently described applications of CV in laparoscopic cholecystectomy are limited. Most current research focus on the identification of workflow and anatomical structure, while the identification of instruments and surgical actions is still awaiting further breakthroughs. Future research on the use of CV in laparoscopic cholecystectomy should focus on application in more scenarios, such as surgeon skill assessment and the development of more efficient models.


Ключевые слова

лапароскопічна холецистектомія; штучний інтелект; комп’ютерний зір; критичний погляд на безпеку; огляд

laparoscopic cholecystectomy; artificial intelligence; computer vision; critical view of safety; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. WHO Guidelines for Safe Surgery 2009: Safe Surgery Saves Lives. Geneva: World Health Organization; 2009. PMID: 23762968.
  2. Hameed MS, Laplante S, Masino C, Khalid MU, Zhang H, Protserov S, et al. What is the educational value and clinical utility of artificial intelligence for intraoperative and postoperative video analysis? A survey of surgeons and trainees. Surg Endosc. 2023;37(12):9453-9460. doi: 10.1007/s00464-023-10377-3. 
  3. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-731. doi: 10.1038/s41551-018-0305-z.
  4. Collins T, Pizarro D, Gasparini S, Bourdel N, Chauvet P, Canis M, et al. Augmented Reality Guided Laparoscopic Surgery of the Uterus. IEEE Trans Med Imaging. 2021;40(1):371-380. doi: 10.1109/TMI.2020.3027442.
  5. Özgür E, Koo B, Le Roy B, Buc E, Bartoli A. Preoperative liver registration for augmented monocular laparoscopy using backward-forward biomechanical simulation. Int J Comput Assist Radiol Surg. 2018;13(10):1629-1640. doi: 10.1007/s11548-018-1842-3.
  6. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg. 2018;268(1):70-76. doi: 10.1097/SLA.0000000000002693.
  7. Takeuchi M, Kawakubo H, Saito K, Maeda Y, Matsuda S, Fukuda K, et al. Automated Surgical-Phase Recognition for Robot-Assisted Minimally Invasive Esophagectomy Using Artificial Intelligence. Ann Surg Oncol. 2022;29(11):6847-6855. doi: 10.1245/s10434-022-11996-1.
  8. Khalid MU, Laplante S, Madani A. Machines with vision for intraoperative guidance during gastrointestinal cancer surgery. Front Med (Lausanne). 2022;9:1025382. doi: 10.3389/fmed.2022.1025382.
  9. Jumah F, Raju B, Nagaraj A, Shinde R, Lescott C, Sun H, et al. Uncharted Waters of Machine and Deep Learning for Surgical Phase Recognition in Neurosurgery. World Neurosurg. 2022;160:4-12. doi: 10.1016/j.wneu.2022.01.020. 
  10. Ward TM, Mascagni P, Ban Y, Rosman G, Padoy N, Meireles O, Hashimoto DA. Computer vision in surgery. Surgery. 2021;169(5):1253-1256. doi: 10.1016/j.surg.2020.10.039.
  11. Kitaguchi D, Takeshita N, Hasegawa H, Ito M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann Gastroenterol Surg. 2021;6(1):29-36. doi: 10.1002/ags3.12513. 
  12. Ruffle JK, Farmer AD, Aziz Q. Artificial Intelligence-Assis-ted Gastroenterology — Promises and Pitfalls. Am J Gastroenterol. 2019;114(3):422-428. doi: 10.1038/s41395-018-0268-4.
  13. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann Surg. 2022;276(2):363-369. doi: 10.1097/SLA.0000000000004594.
  14. Cheng K, You J, Wu S, Chen Z, Zhou Z, Guan J, et al. Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis. Surg Endosc. 2022;36(5):3160-3168. doi: 10.1007/s00464-021-08619-3. 
  15. Lam K, Chen J, Wang Z, Iqbal FM, Darzi A, Lo B, et al. Machine learning for technical skill assessment in surgery: a systema-tic review. NPJ Digit Med. 2022;5(1):24. doi: 10.1038/s41746-022-00566-0.
  16. Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos. IEEE Trans Med Imaging. 2017;36(1):86-97. doi: 10.1109/TMI.2016.2593957.
  17. Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, et al. Computer Vision Analysis of Intraoperative Video: Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy. Ann Surg. 2019;270(3):414-421. doi: 10.1097/SLA.0000000000003460.
  18. Garrow CR, Kowalewski KF, Li L, Wagner M, Schmidt MW, Engelhardt S, et al. Machine Learning for Surgical Phase Recognition: A Systematic Review. Ann Surg. 2021;273(4):684-693. doi: 10.1097/SLA.0000000000004425.
  19. van Amsterdam B, Clarkson MJ, Stoyanov D. Gesture recognition in robotic surgery: a review. IEEE Trans Biomed Eng. 2021;68(6):2021-2035. doi: 10.1109/TBME.2021.3054828.
  20. Beyersdorffer P, Kunert W, Jansen K, Miller J, Wilhelm P, Burgert O, et al. Detection of adverse events leading to inadvertent injury during laparoscopic cholecystectomy using convolutional neural networks. Biomed Tech (Berl). 2021;66(4):413-421. doi: 10.1515/bmt-2020-0106.
  21. Anteby R, Horesh N, Soffer S, Zager Y, Barash Y, Amiel I, et al. Deep learning visual analysis in laparoscopic surgery: a systema-tic review and diagnostic test accuracy meta-analysis. Surg Endosc. 2021;35(4):1521-1533. doi: 10.1007/s00464-020-08168-1.
  22. Mithany RH, Aslam S, Abdallah S, Abdelmaseeh M, Ger-ges F, Mohamed MS, et al. Advancements and Challenges in the Application of Artificial Intelligence in Surgical Arena: A Literature Review. Cureus. 2023;15(10):e47924. doi: 10.7759/cureus.47924. 
  23. Shiroshita H, Inomata M, Akira S, Kanayama H, Yamaguchi S, Eguchi S, et al. Current Status of Endoscopic Surgery in Japan: The 15th National Survey of Endoscopic Surgery by the Japan Society for Endoscopic Surgery. Asian J Endosc Surg. 2022;15(2):415-426. doi: 10.1111/ases.13012.
  24. Sugrue M, Coccolini F, Bucholc M, Johnston A; Contributors from WSES. Intra-operative gallbladder scoring predicts conversion of laparoscopic to open cholecystectomy: a WSES prospective collaborative study. World J Emerg Surg. 2019;14:12. doi: 10.1186/s13017-019-0230-9.
  25. Pucher PH, Brunt LM, Davies N, Linsk A, Munshi A, Rodriguez HA, et al. Outcome trends and safety measures after 30 years of laparoscopic cholecystectomy: a systematic review and pooled data analysis. Surg Endosc. 2018;32(5):2175-2183. doi: 10.1007/s00464-017-5974-2.
  26. Colvin HS, Kimura T, Iso H, Ikehara S, Sawada N, Tsugane S. Risk factors for gallstones and cholecystectomy: a large-scale population-based prospective cohort study in Japan. Dig Dis. 2022;40(3):385-393. doi: 10.1159/000517270.
  27. Griffiths EA, Hodson J, Vohra RS, Marriott P; CholeS Study Group; Katbeh T, et al. Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy. Surg Endosc. 2019;33(1):110-121. doi: 10.1007/s00464-018-6281-2.
  28. Ward TM, Hashimoto DA, Ban Y, Rosman G, Meireles OR. Artificial intelligence prediction of cholecystectomy operative course from automated identification of gallbladder inflammation. Surg Endosc. 2022;36(9):6832-6840. doi: 10.1007/s00464-022-09009-z. 
  29. Wakabayashi G, Iwashita Y, Hibi T, Takada T, Strasberg SM, Asbun HJ, et al. Tokyo Guidelines 2018: surgical management of acute cholecystitis: safe steps in laparoscopic cholecystectomy for acute cholecystitis (with videos). J Hepatobiliary Pancreat Sci. 2018;25(1):73-86. doi: 10.1002/jhbp.517.
  30. Madni TD, Leshikar DE, Minshall CT, Nakonezny PA, Cornelius CC, Imran JB, et al. The Parkland grading scale for cholecystitis. Am J Surg. 2018;215(4):625-630. doi: 10.1016/j.amjsurg.2017.05.017.
  31. Madni TD, Nakonezny PA, Barrios E, Imran JB, Clark AT, Taveras L, et al. Prospective validation of the Parkland Grading Scale for Cholecystitis. Am J Surg. 2019;217(1):90-97. doi: 10.1016/j.amjsurg.2018.08.005.
  32. Brunt LM, Deziel DJ, Telem DA, Strasberg SM, Aggarwal R, Asbun H, et al. Safe cholecystectomy multi-society practice guideline and state-of-the-art consensus conference on prevention of bile duct injury during cholecystectomy. Surg Endosc. 2020;34(7):2827-2855. doi: 10.1007/s00464-020-07568-7.
  33. Barrett M, Asbun HJ, Chien HL, Brunt LM, Telem DA. Bile duct injury and morbidity following cholecystectomy: a need for improvement. Surg Endosc. 2018;32(4):1683-1688. doi: 10.1007/s00464-017-5847-8.
  34. Fong ZV, Pitt HA, Strasberg SM, Loehrer AP, Sicklick JK, Talamini MA, et al. Diminished Survival in Patients with Bile Leak and Ductal Injury: Management Strategy and Outcomes. J Am Coll Surg. 2018;226(4):568-576.e1. doi: 10.1016/j.jamcollsurg.2017.12.023.
  35. Iwashita Y, Hibi T, Ohyama T, Umezawa A, Takada T, Strasberg SM, et al. Delphi consensus on bile duct injuries during laparoscopic cholecystectomy: an evolutionary cul-de-sac or the birth pangs of a new technical framework? J Hepatobiliary Pancreat Sci. 2017;24(11):591-602. doi: 10.1002/jhbp.503. 
  36. Strasberg SM. A three-step conceptual roadmap for avoiding bile duct injury in laparoscopic cholecystectomy: an invited perspective review. J Hepatobiliary Pancreat Sci. 2019;26(4):123-127. doi: 10.1002/jhbp.616.
  37. Mangieri CW, Hendren BP, Strode MA, Bandera BC, Fa-ler BJ. Bile duct injuries (BDI) in the advanced laparoscopic cholecystectomy era. Surg Endosc. 2019;33(3):724-730. doi: 10.1007/s00464-018-6333-7.
  38. Fujinaga A, Endo Y, Etoh T, Kawamura M, Nakanuma H, Kawasaki T, et al. Development of a cross-artificial intelligence system for identifying intraoperative anatomical landmarks and surgical phases during laparoscopic cholecystectomy. Surg Endosc. 2023;37(8):6118-6128. doi: 10.1007/s00464-023-10097-8. 
  39. Strasberg SM, Brunt LM. The Critical View of Safety: Why It Is Not the Only Method of Ductal Identification Within the Standard of Care in Laparoscopic Cholecystectomy. Ann Surg. 2017;265(3):464-465. doi: 10.1097/SLA.0000000000002054.
  40. Mori T, Endo H, Misawa T, Yamaguchi S, Sakamoto Y, Inomata M, et al. Involvement of a skill-qualified surgeon favorably influences outcomes of laparoscopic cholecystectomy performed for acute cholecystitis. Surg Endosc. 2022;36(8):5956-5963. doi: 10.1007/s00464-022-09045-9.
  41. Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watanabe Y, et al. Computer vision in surgery: from potential to clinical value. NPJ Digit Med. 2022;5(1):163. doi: 10.1038/s41746-022-00707-5.
  42. Lilley EJ, Scott JW, Jiang W, Krasnova A, Raol N, Changoor N, et al. Intraoperative cholangiography during cholecystectomy among hospitalized medicare beneficiaries with non-neoplastic biliary disease. Am J Surg. 2017;214(4):682-686. doi: 10.1016/j.amjsurg.2017.06.021.
  43. Sgaramella LI, Gurrado A, Pasculli A, de Angelis N, Memeo R, Prete FP, et al. The critical view of safety during laparoscopic cholecystectomy: Strasberg Yes or No? An Italian Multicentre study. Surg Endosc. 2021;35(7):3698-3708. doi: 10.1007/s00464-020-07852-6.
  44. de’Angelis N, Catena F, Memeo R, Coccolini F, Martínez-Pérez A, Romeo OM, et al. 2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy. World J Emerg Surg. 2021;16(1):30. doi: 10.1186/s13017-021-00369-w.
  45. Mascagni P, Rodríguez-Luna MR, Urade T, Felli E, Pessaux P, Mutter D, et al. Intraoperative Time-Out to Promote the Implementation of the Critical View of Safety in Laparoscopic Cholecystectomy: A Video-Based Assessment of 343 Procedures. J Am Coll Surg. 2021;233(4):497-505. doi: 10.1016/j.jamcollsurg.2021.06.018.
  46. Liu R, Liu Z, Wang X. Intraoperative Time-Out to Promote the Implementation of the Critical View of Safety in Laparoscopic Cholecystectomy: On the Comprehension of Criteria, Disease Severity, and Hawthorne Effects. J Am Coll Surg. 2022;234(6):1261-1262. doi: 10.1097/XCS.0000000000000147.
  47. Tashiro Y, Aoki T, Kobayashi N, Tomioka K, Saito K, Matsuda K, Kusano T. Novel navigation for laparoscopic cholecystectomy fusing artificial intelligence and indocyanine green fluorescent imaging. J Hepatobiliary Pancreat Sci. 2024 Apr 1. doi: 10.1002/jhbp.1422. Online ahead of print.
  48. Kawamura M, Endo Y, Fujinaga A, Orimoto H, Amano S, Kawasaki T, et al. Development of an artificial intelligence system for real-time intraoperative assessment of the Critical View of Safety in laparoscopic cholecystectomy. Surg Endosc. 2023;37(11):8755-8763. doi: 10.1007/s00464-023-10328-y. 
  49. Ivanovic B, Leung K, Schmerling E, Pavone M. Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach. IEEE Robotics and Automation Letters. 2021;6(2):295-302. doi: 10.1109/LRA.2020.3043163. 
  50. Le Roy B, Ozgur E, Koo B, Buc E, Bartoli A. Augmented reality guidance in laparoscopic hepatectomy with deformable semi-automatic computed tomography alignment (with video). J Visc Surg. 2019;156(3):261-262. doi: 10.1016/j.jviscsurg.2019.01.009.
  51. Shvets A, Rakhlin A, Kalinin A, Iglovikov V. Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 17th IEEE international conference on machine learning and applications (ICMLA). 2018 Dec 17–20; Orlando, FL, USA. doi: 10.1109/ICMLA.2018.00100.
  52. lshirbaji TA, Jalal NA, Möller K. A convolutional neural network with a two-stage LSTM model for tool presence detection in laparoscopic videos. Curr Dir Biomed Eng. 2020;6(1):20200002. doi: 10.1515/cdbme-2020-0002.
  53. Jo K, Choi Y, Choi J, Chung JW. Robust Real-Time Detection of Laparoscopic Instruments in Robot Surgery Using Convolutional Neural Networks with Motion Vector Prediction. Applied Sciences. 2019;9(14):2865. doi: 10.3390/app9142865.
  54. Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C, et al. Artificial Intelligence for Surgical Safety: Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning. Ann Surg. 2022;275(5):955-961. doi: 10.1097/SLA.0000000000004351. 
  55. Laplante S, Namazi B, Kiani P, Hashimoto DA, Alseidi A, Pasten M, et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy. Surg Endosc. 2023;37(3):2260-2268. doi: 10.1007/s00464-022-09439-9. 
  56. Bar O, Neimark D, Zohar M, Hager GD, Girshick R, Fried GM, et al. Impact of data on generalization of AI for surgical intelligence applications. Sci Rep. 2020;10(1):22208. doi: 10.1038/s41598-020-79173-6.
  57. Loukas C, Frountzas M, Schizas D. Patch-based classification of gallbladder wall vascularity from laparoscopic images using deep learning. Int J Comput Assist Radiol Surg. 2021;16(1):103-113. doi: 10.1007/s11548-020-02285-x.
  58. Vannucci M, Laracca GG, Mercantini P, Perretta S, Padoy N, Dallemagne B, Mascagni P. Statistical models to preoperatively predict operative difficulty in laparoscopic cholecystectomy: A systematic review. Surgery. 2022;171(5):1158-1167. doi: 10.1016/j.surg.2021.10.001.
  59. Jin Y, Dou Q, Chen H, Yu L, Qin J, Fu CW, Heng PA. 
  60. SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network. IEEE Trans Med Imaging. 2018;37(5):1114-1126. doi: 10.1109/TMI.2017.2787657. 
  61. Namazi B, Sankaranarayanan G, Devarajan V. Automatic detection of surgical phases in laparoscopic videos. In: Arabnia HR, de la Fuente D, Kozerenko EB, Olivas JA, Tinetti FG, editors. 2018 World Congress in Computer Science, Computer Engineering and Applied Computing, CSCE 2018 — Proceedings of the 2018 International Conference on Artificial Intelligence, ICAI 2018. CSREA Press; 2018. P. 124-130. 
  62. Loukas C. Surgical Phase Recognition of Short Video Shots based on Temporal Modeling of Deep Features. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019). 2019 Febr 22–24; Prague, Czech Republic. doi: 10.5220/0007352000210029.
  63. Golany T, Aides A, Freedman D, Rabani N, Liu Y, Rivlin E, et al. Artificial intelligence for phase recognition in complex laparoscopic cholecystectomy. Surg Endosc. 2022;36(12):9215-9223. doi: 10.1007/s00464-022-09405-5.
  64. Shinozuka K, Turuda S, Fujinaga A, Nakanuma H, Kawamura M, Matsunobu Y, et al. Artificial intelligence software available for medical devices: surgical phase recognition in laparoscopic cholecystectomy. Surg Endosc. 2022;36(10):7444-7452. doi: 10.1007/s00464-022-09160-7.
  65. Wu S, Chen Z, Liu R, Li A, Cao Y, Wei A, et al. SurgSmart: an artificial intelligent system for quality control in laparoscopic cholecystectomy: an observational study. Int J Surg. 2023;109(5):1105-1114. doi: 10.1097/JS9.0000000000000329. 
  66. Abiyev RH, Altabel MZ, Darwish M, Helwan A. A Multimodal Transformer Model for Recognition of Images from Complex Laparoscopic Surgical Videos. Diagnostics (Basel). 2024;14(7):681. doi: 10.3390/diagnostics14070681.
  67. Hegde SR, Namazi B, Iyengar N, Cao S, Desir A, Marques C, et al. Automated segmentation of phases, steps, and tasks in laparosco-pic cholecystectomy using deep learning. Surg Endosc. 2024;38(1):158-170. doi: 10.1007/s00464-023-10482-3. 
  68. Korndorffer JR Jr, Hawn MT, Spain DA, Knowlton LM, Azagury DE, Nassar AK, et al. Situating Artificial Intelligence in Surgery: A Focus on Disease Severity. Ann Surg. 2020;272(3):523-528. doi: 10.1097/SLA.0000000000004207. 
  69. Mascagni P, Alapatt D, Urade T, Vardazaryan A, Mutter D, Marescaux J, et al. A computer vision platform to automatically locate critical events in surgical videos: documenting safety in laparosco-pic cholecystectomy. Ann Surg. 2021;274(1):e93-e95. doi: 10.1097/SLA.0000000000004736.
  70. Tokuyasu T, Iwashita Y, Matsunobu Y, Kamiyama T, Ishikake M, Sakaguchi S, et al. Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy. Surg Endosc. 2021;35(4):1651-1658. doi: 10.1007/s00464-020-07548-x.
  71. Liu R, An J, Wang Z, Guan J, Liu J, Jiang J, et al. Artificial intelligence in laparoscopic cholecystectomy: does computer vision outperform human vision? Art Int Surg. 2022;2:80-92. doi: 10.20517/ais.2022.04.
  72. Khalid MU, Laplante S, Masino C, Alseidi A, Jayaraman S, Zhang H, et al. Use of artificial intelligence for decision-support to avoid high-risk behaviors during laparoscopic cholecystectomy. Surg Endosc. 2023;37(12):9467-9475. doi: 10.1007/s00464-023-10403-4. 
  73. Nakanuma H, Endo Y, Fujinaga A, Kawamura M, Kawasaki T, Masuda T, et al. An intraoperative artificial intelligence system identifying anatomical landmarks for laparoscopic cholecystectomy: a prospective clinical feasibility trial (J-SUMMIT-C-01). Surg Endosc. 2023;37(3):1933-1942. doi: 10.1007/s00464-022-09678-w. 
  74. Endo Y, Tokuyasu T, Mori Y, Asai K, Umezawa A, Kawamura M, et al. Impact of AI system on recognition for anatomical landmarks related to reducing bile duct injury during laparoscopic cholecystectomy. Surg Endosc. 2023;37(7):5752-5759. doi: 10.1007/s00464-023-10224-5. 
  75. Abbing JR, Voskens FJ, Gerats BGA, Egging RM, Milletari F, Broeders IAMJ. Towards an AI-based assessment model of surgical difficulty during early phase laparoscopic cholecystectomy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2023;11(4):1229-1306. doi: 10.1080/21681163.2022.2163296.
  76. Leifman G, Golany T, Rivlin E, Khoury W, Assalia A, Reissman P. Real-Time Artificial Intelligence Validation of Critical View of Safety in Laparoscopic Cholecystectomy. Available at SSRN: https://ssrn.com/abstract=4423669.
  77. Mascagni P, Alapatt D, Lapergola A, Vardazaryan A, Mazellier JP, Dallemagne B, et al. Early-stage clinical evaluation of real-time artificial intelligence assistance for laparoscopic cholecystectomy. Br J Surg. 2024;111(1):znad353. doi: 10.1093/bjs/znad353. 
  78. Petracchi EJ, Olivieri SE, Varela J, Canullan CM, Zandalazini H, Ocampo C, Quesada BM. Use of artificial intelligence in the detection of the critical view of safety during laparoscopic cholecystectomy. J Gastrointest Surg. 2024:S1091-255X(24)00372-X. doi: 10.1016/j.gassur.2024.03.018. Online ahead of print. 
  79. Smithmaitrie P, Khaonualsri M, Sae-Lim W, Wangkulangkul P, Jearanai S, Cheewatanakornkul S. Development of deep learning framework for anatomical landmark detection and guided dissection line during laparoscopic cholecystectomy. Heliyon. 2024;10(3):e25210. doi: 10.1016/j.heliyon.2024.e25210. 
  80. Choi B, Jo K, Choi S, Choi J. Surgical-tools Detection based on Convolutional Neural Network in Laparoscopic Robot-assisted Surgery. In: Annu Int Conf IEEE Eng Med Biol Soc. 2017 July 11–15; Jeju, Korea (South). doi: 10.1109/EMBC.2017.8037183. 
  81. Wang S, Raju A, Huang J. Deep learning based multi-label classification for surgical tool presence detection in laparoscopic videos. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). 2017 Apr 18–21; Melbourne, VIC, Australia. doi: 10.1109/ISBI.2017.7950597.
  82. Hu X, Yu L, Chen H, Qin J, Heng P. AGNet: Attention-Guided Network for Surgical Tool Presence Detection. In: Cardoso M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA, ML-CDS 2017. Lecture Notes in Computer Science. 10553. Springer, Cham. doi: 10.1007/978-3-319-67558-922.
  83. Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A, Fei-Fei L. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018 March 12–15; Lake Tahoe, NV, USA. doi: 10.1109/WACV.2018.00081.
  84. Aspart F, Bolmgren JL, Lavanchy JL, Beldi G, Woods MS, Padoy N, Hosgor E. ClipAssistNet: bringing real-time safety feedback to operating rooms. Int J Comput Assist Radiol Surg. 2022;17(1):5-13. doi: 10.1007/s11548-021-02441-x.
  85. Kitaguchi D, Takeshita N, Matsuzaki H, Takano H, Owada Y, Enomoto T, et al. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg Endosc. 2020;34(11):4924-4931. doi: 10.1007/s00464-019-07281-0.
  86. Ward TM, Hashimoto DA, Ban Y, Rattner DW, Inoue H, Lillemoe KD, et al. Automated operative phase identification in peroral endoscopic myotomy. Surg Endosc. 2021;35(7):4008-4015. doi: 10.1007/s00464-020-07833-9.
  87. Akbari H, Yuan L, Qian R, Chuang WH, Chang SF, Cui Y, et al. VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Wortman Vaughan J., editors. Advances in Neural Information Processing Systems 34. 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Curran Associates, Inc.; 2022. P. 24206-24221. 
  88. Farha YA, Gall J. MS-TCN: multi-stage temporal convolutional network for action segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019 June 15–20; Long Beach, CA, USA. doi: 10.1109/CVPR.2019.00369.
  89. Twinanda AP, Yengera G, Mutter D, Marescaux J, Padoy N. RSDNet: learning to predict remaining surgery duration from laparoscopic videos without manual annotations. IEEE Trans Med Imaging. 2019;38(4):1069-1078. doi: 10.1109/TMI.2018.2878055.
  90. Asai K, Iwashita Y, Ohyama T, Endo I, Hibi T, Umezawa A, et al. Application of a novel surgical difficulty grading system during laparoscopic cholecystectomy. J Hepatobiliary Pancreat Sci. 2022;29(7):758-767. doi: 10.1002/jhbp.1068. 
  91. Schendel J, Ball C, Dixon E, Sutherland F. Prevalence of anatomic landmarks for orientation during elective laparoscopic cholecystectomies. Surg Endosc. 2020;34(8):3508-3512. doi: 10.1007/s00464-019-07131-z. 
  92. Lockhart S, Singh-Ranger G. Rouviere’s sulcus-aspects of incorporating this valuable sign for laparoscopic cholecystectomy. Asian J Surg. 2018;41(1):1-3. doi: 10.1016/j.asjsur.2016.07.012.
  93. Gupta V, Jain G. The R4U Planes for the Zonal Demarcation for Safe Laparoscopic Cholecystectomy. World J Surg. 2021;45(4):1096-1101. doi: 10.1007/s00268-020-05908-1.
  94. Kumazu Y, Kobayashi N, Kitamura N, Rayan E, Neculoiu P, Misumi T, et al. Automated segmentation by deep learning of loose connective tissue fibers to define sage dissection planes in robot-assisted gastrectomy. Sci Rep. 2021;11(1):21198. doi: 10.1038/s41598-021-00557-3.
  95. Badgery H, Zhou Y, Bailey J, Brotchie P, Chong L, Croagh D, et al. Using neural networks to autonomously assess adequacy in intraoperative cholangiograms. Surg Endosc. 2024;38(5):2734-2745. doi: 10.1007/s00464-024-10768-0. 
  96. Connor SJ, Perry W, Nathanson L, Hugh TB, Hugh TJ.Using a standardized method for laparoscopic cholecystectomy to create a concept operation-specific checklist. HPB (Oxford). 2014;16(5):422-9. doi: 10.1111/hpb.12161.
  97. Guo K, Tao H, Zhu Y, Li B, Fang C, Qian Y, Yang J. Current applications of artificial intelligence-based computer vision in laparoscopic surgery. Laparoscopic, Endoscopic and Robotic Surgery. 2023;6(3):91-96. doi: 10.1016/j.lers.2023.07.001.
  98. Bamba Y, Ogawa S, Itabashi M, Shindo H, Kameoka S, Okamoto T, Yamamoto M. Object and anatomical feature recognition in surgical video images based on a convolutional neural network. Int J Comput Assist Radiol Surg. 2021;16(11):2045-2054. doi: 10.1007/s11548-021-02434-w.
  99. Cobianchi L, Verde JM, Loftus TJ, Piccolo D, Dal Mas F, Mascagni P et al. Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. Am Coll Surg. 2022;235(2):268-275. doi: 10.1097/XCS.0000000000000242.

Вернуться к номеру