Журнал «Медицина неотложных состояний» Том 20, №6, 2024
Вернуться к номеру
Черепно-мозкова травма мирного та воєнного часу. Перспективи протинападових препаратів у профілактиці та лікуванні посттравматичної епілепсії (огляд)
Авторы: Літовченко Т.А. (1), Мар’єнко Л.Б. (2), Дубенко А.Є. (3), Літовченко А.В. (4), Мар’єнко К.М. (2)
(1) - Харківський національний медичний університет, м. Харків, Україна
(2) - Львівський національний медичний університет ім. Данила Галицького, м. Львів, Україна
(3) - ДУ «Інститут неврології, психіатрії та наркології НАМН України», ЛДЦЕ КНП ХОР «Обласна клінічна психіатрична лікарня № 3», МЦ «Нейрон», м. Харків, Україна
(4) - Харківська державна академія фізичної культури, м. Харків, Україна
Рубрики: Медицина неотложных состояний
Разделы: Справочник специалиста
Версия для печати
Згідно з даними світової статистики, на початок 2023 року черепно-мозкові травми (ЧМТ) є найбільш поширеним видом травм і однією з головних причин інвалідизації у всьому світі. Щорічно на земній кулі, внаслідок дорожньо-транспортних пригод, падінь, занять спортом, військових конфліктів, 95–783 особи із 100 тисяч отримують серйозні травми головного мозку. Посттравматична епілепсія (ПТЕ) є одним з найбільш тяжких наслідків ЧМТ, частота якої, за різними оцінками, коливається від 2 до 50 % залежно від тяжкості травми. Військова ЧМТ має низку особливостей, що обумовлюють розвиток епілептичних нападів навіть після легкої травми. У цьому огляді, що включає результати експериментальних та клінічних досліджень протягом останніх років, здійснено аналіз і узагальнення відомих на сьогодні механізмів епілептогенезу, біомаркерів, клінічних особливостей та коморбідних станів ПТЕ, а також впровадження в практику профілактичних та лікувальних стратегій із застосуванням протинападових препаратів.
According to world statistics, traumatic brain injury (TBI) is the most common type of trauma and one of the main causes of disability worldwide as of beginning of 2023. Every year, 95–783 people per 100,000 suffer serious brain injuries due to traffic accidents, falls, playing sports, military conflicts. Post-traumatic epilepsy is one of the most severe consequences of TBI; according to various estimates, its frequency ranges from 2 to 50 %, depending on the severity of trauma. Military TBI has some features that determine the development of epileptic seizures even after a mild injury. In this review, which includes the results of experimental and clinical research in recent years, an analysis and generalization were made of the currently known mechanisms of epileptogenesis, biomarkers, clinical features and comorbidities of post-traumatic epilepsy, as well as the implementation into practice of preventive and therapeutic strategies using anti-seizure medications.
черепно-мозкова травма; військова ЧМТ; посттравматична епілепсія; епілептогенез; біомаркери; профілактика; лікування; протинападові препарати
traumatic brain injury; military traumatic brain injury; post-traumatic epilepsy; epileptogenesis; biomarkers; prevention; treatment; anti-seizure medications
Сучасні механізми епілептогенезу після ЧМТ
Біомаркери ПТЕ
Військова ЧМТ ≠ ЧМТ в умовах мирного часу
Рання оцінка та лікування в умовах бойових дій
Когнітивна дисфункція та деменція — коморбідні стани посттравматичної епілепсії
Висновки
- Christensen J. The epidemiology of posttrauma-tic epilepsy. Semin Neurol. 2015;35(3):218-22. https://doi.org/10.1055/s-0035-1552923.
- Taylor C.A., Bell J.M., Breiding M.J., and Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths — United States, 2007 and 2013. MMWR Surveill Summ. 2017;66:1-16.
- Christian C.A., Reddy D.S., Maguire J., and Forcelli P.A. Sex differences in the epilepsies and associated comorbidities: implications for use and development of pharmacotherapies. Pharmacol Rev. 2020;72:767-800.
- Malec J.F., Ketchum J.M., Hammond F.M., Corrigan J.D., Dams-O’Connor K., Health T., et al. Longitudinal effects of medical comorbidities on functional outcome and life satisfaction after traumatic brain injury: an individual growth curve analysis of NIDILRR traumatic brain injury model system data. J Head Trauma Rehabil. 2019;34:E24-E35.
- Gilbert K.S., Kark S.M., Gehrman P., Bogdanova Y. Sleep disturbances, TBI and PTSD: implications for treatment and recovery. Clin Psychol Rev. 2015;40:195-212.
- Englander J., Bushnik T., Duong T.T., Cifu D.X., Zafonte R., Wright J., et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003;84:365-373.
- Annegers J.F., Hauser W.A., Coan S.P., Rocca W.A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 1998;338:20-24.
- Asikainen I., Kaste M., Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999;40:584-89.
- Ritter A.C., Wagner A.K., Fabio A., et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: a traumatic brain injury model systems study. Epilepsia. 2016;57(12):1968-77. https://doi.org/10.1111/epi.13582.
- Brown J.W., Lawn N.D., Lee J., Dunne J.W. When is it safe to return to driving following first-ever seizure? J Neurol Neurosurg Psychiatry. 2015;86 (1):60-4. https://doi.org/10.1136/jnnp-2013-307529.
- Kaur P., Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018;16 (8):1224-38. https://doi.org/10.2174/1570159X15666170613083606.
- Fordington S., Manford M. A review of seizures and epilepsy following traumatic brain injury. J Neurol. 2020;267(10):3105-11. https://doi.org/10.1007/s00415-020-09926-w.
- Liu Z., Chen Q., Chen Z., et al. Clinical analysis on risk factors and prognosis of early posttraumatic epilepsy. Arq Neuropsiquiatr. 2019;77(6):375-80. https://doi.org/10.1590/0004-282X20190071.
- Johnson V.E., Weber M.T., Xiao R., et al. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 2018;135(5):711-26. https://doi.org/10.1007/s00401-018-1824-0.
- Shi Z.S., Duckwiler G.R., Jahan R., et al. Early blood-brain barrier disruption after mechanical thrombectomy in acute ischemic stroke. J Neuroimaging. 2018;28(3):283-8. https://doi.org/10.1111/jon.12504.
- Golub V.M., Reddy D.S. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev. 2022;74:387-438. DOI: https://doi.org/10.1124/pharmrev.121.000375.
- Joint Trauma System Clinical Practice Guideline (JTS CPG). https://JTS.health.mil/index.CFM/PI_CPGS/CPGS Traumatic Brain Injury Management and Basic Neurosurgery in the Deployed Environment 02/03/2023 USA.
- Dengler B., McCafferty R., Neal C., Bell R., Sonka B.J., Jensen S., et al. A Joint Trauma System Clinical Practice Guideline: Traumatic Brain Injury Management and Basic Neurosurgery in the Deployed Environment. Military Medicine, usae298. https://doi.org/10.1093/milmed/usae298. Published: 15 June 2024.
- Wang A., Zhu G., Qian P., Zhu T. Tetramethylpyrazine reduces blood-brain barrier permeability associated with enhancement of peripheral cholinergic anti-inflammatory effects for treating traumatic brain injury. Exp Ther Med. 2017;14 (3):2392-400. https://doi.org/10.3892/etm.2017.4754.
- Scholl U.I., Choi M., Liu T., et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA. 2009;106(14):5842-7. https://doi.org/10.1073/pnas.0901749106.
- Buono R.J., Lohoff F.W., Sander T., et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 2004;58(2-3):175-83. https://doi.org/10.1016/j.eplepsyres.2004.02.003.
- Iffland P., Grant G.G., Janigro D. Mechanisms of cerebral edema leading to early seizures after traumatic brain injury. New York: Springer; 2014. Р. 29-36. https://doi.org/10.1007/978-1-4614-8690-9_2.
- Weissberg I., Wood L., Kamintsky L., et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115-25. https://doi.org/10.1016/j.nbd.2015.02.029.
- Vespa P.M., Shrestha V., Abend N., et al. The epilepsy bioinformatics study for antiepileptogenic therapy (EpiBioS4Rx) clinical biomarker: Study design and protocol. Neurobiol Dis. 2019;123:110-4. https://doi.org/10.1016/j.nbd.2018.07.025.
- Yuh E.L., Mukherjee P., Lingsma H.F., et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2013;73(2):224-35. https://doi.org/10.1002/ana.23783.
- Englander J., Bushnik T., Duong T.T., et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003;84(3):365-73. https://doi.org/10.1053/apmr.2003.50022.
- D’Alessandro R., Tinuper P., Ferrara R., et al. CT scan prediction of late post-traumatic epilepsy. J Neurol Neurosurg Psychiatry. 1982;45(12):1153-5. https://doi.org/10.1136/jnnp.45.12.1153.
- D’Alessandro R., Ferrara R., Benassi G., et al. Computed tomographic scans in posttraumatic epilepsy. Arch Neurol. 1988;45(1):42-3. https://doi.org/10.1001/archneur.1988.00520250048019.
- Agoston D.V., Vink R., Helmy A., et al. How to translate time: the temporal aspects of rodent and human pathobiological processes in traumatic brain injury. J Neurotrauma. 2019;36(11):1724-37. https://doi.org/10.1089/neu.2018.6261.
- Jupp B., Williams J., Binns D., Hicks R.J., Cardamone L., Jones N., et al. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia. 2012;53:1233-1244.
- Bergsneider M., Hovda D.A., Shalmon E., Kelly D.F., Vespa P.M., Martin N.A., et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241-251.
- Cornford E.M., Oldendorf W.H. Epilepsy and the blood-brain barrier. Adv Neurol. 1986;44:787-812.
- Seiffert E., Dreier J.P., Ivens S., et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24(36):7829-36. https://doi.org/10.1523/JNEUROSCI.1751-04.2004.
- Dadas A., Janigro D. Breakdown of blood brain barrier as a mechanism of post-traumatic epilepsy. Neurobiol Dis. 2019;123:20-6. https://doi.org/10.1016/j.nbd.2018.06.022.
- Librizzi L., Noè F., Vezzani A., et al. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol. 2012;72(1):82-90. https://doi.org/10.1002/ana.23567.
- van Vliet E.A., da Costa Araújo S., Redeker S., et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130 (Pt. 2):521-34. https://doi.org/10.1093/brain/awl318.
- Mendes N.F., Pansani A.P., Carmanhães E.R.F., et al. The blood-brain barrier breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. Front Neurol. 2019;10:382. https://doi.org/10.3389/fneur.2019.00382.
- Bar-Klein G., Lublinsky S., Kamintsky L., et al. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain. 2017;140(6):1692-705. https://doi.org/10.1093/brain/awx073.
- Gupta R.K., Saksena S., Agarwal A., et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia. 2005;46 (9):1465-71. https://doi.org/10.1111/j.1528-1167.2005.01205.x.
- Immonen R., Harris N.G., Wright D., et al. Imaging biomarkers of epileptogenecity after traumatic brain injury — preclinical frontiers. Neurobiol Dis. 2019;123:75-85. https://doi.org/10.1016/j.nbd.2018.10.008.
- Bendlin B.B., Ries M.L., Lazar M., et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008;42(2):503-14. https://doi.org/10.1016/j.neuroimage.2008.04.254.
- Sidaros A., Engberg A.W., Sidaros K., et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008;131(Pt. 2):559-72. https://doi.org/10.1093/brain/awm294.
- Kraus M.F., Susmaras T., Caughlin B.P., et al. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130(Pt. 10):2508-19. https://doi.org/10.1093/brain/awm216.
- Irimia A., Wang B., Aylward S.R., et al. Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin. 2012;1(1):1-17. https://doi.org/10.1016/j.nicl.2012.08.002.
- Blumbergs P.C., Scott G., Manavis J., et al. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995;12(4):565-72. https://doi.org/10.1089/neu.1995.12.565.
- Alstott J., Breakspear M., Hagmann P., et al. Mode-ling the impact of lesions in the human brain. PLoS Comput Biol. 2009;5(6):e1000408. https://doi.org/10.1371/journal.pcbi.1000408.
- Bragin A., Li L., Almajano J., et al. Pathologic electrographic changes after experimental traumatic brain injury. Epilepsia. 2016;57(5):735-45. https://doi.org/10.1111/epi.13359.
- Salazar A.M. and Grafman J. Post-traumatic epilepsy: clinical clues to pathogenesis and paths to prevention. Handb Clin Neurol. 2015;128:525-538.
- De Oliveira C.O., Reimer A.G., Da Rocha A.B., Grivicich I., Schneider R.F., Roisenberg I., Regner A., and Simon D. Plasma von Willebrand factor levels correlate with clinical outcome of severe traumatic brain injury. J Neurotrauma. 2007;24:1331-1338.
- Ding K., Gupta P.K., and Diaz-Arrastia R. Epilepsy after traumatic brain injury, in Translational Research in Traumatic Brain Injury (Laskowitz D. and Grant G., eds). CRC Press/Taylor and Francis Group, Boca Raton, 2016, FL (Chapter 14).
- Dash P.K., Redell J.B., Hergenroeder G., Zhao J., Clifton G.L., and Moore A. Serum ceruloplasmin and copper are early biomarkers for traumatic brain injury-associated elevated intracranial pressure. J Neurosci Res. 2010;88:1719-1726.
- Katayama T., Tanaka H., Yoshida T., Uehara T., and Minami M. Neuronal injury induces cytokine-induced neutrophil chemoattractant-1 (CINC-1) production in astrocytes. J Pharmacol Sci. 2010;109:88-93.
- Diamond M.L., Ritter A.C., Failla M.D., Boles J.A., Conley Y.P., Kochanek P.M., and Wagner A.K. IL-1b associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia. 2015;56:991-1001.
- Tubi M.A., Lutkenhoff E., Blanco M.B., McArthur D., Villablanca P., Ellingson B., et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study. Neurobiol Dis. 2019;123:115-121.
- Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M., et al. An estimate of the total number € of true human miRNAs. Nucleic Acids Res. 2019;47:3353-3364.
- Raoof R., Jimenez-Mateos E.M., Bauer S., Tackenberg B., Rosenow F., Lang J., et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep. 2017;7:3328.
- Raoof R., Bauer S., El Naggar H., Connolly N.M.C., Brennan G.P., Brindley E., et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine. 2018;38:127-141.
- Hogg M.C., Raoof R., El Naggar H., Monsefi N., Delanty N., O’Brien D.F., et al. Elevation in plasma tRNA fragments precede seizures in human epilepsy. J Clin Invest. 2019;129:2946-2951.
- Redell J.B., Moore A.N., Ward N.H., Hergenroeder G.W., and Dash P.K. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27:2147-2156.
- Gorter J.A., Iyer A., White I., Colzi A., van Vliet E.A., Sisodiya S., and Aronica E. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis. 2014;62:508-520.
- Brennan G.P., Bauer S., Engel T., Jimenez-Mateos E.M., Del Gallo F., Hill T.D.M., et al. Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiol Dis. 2020;144:105048.
- Avsar E. and Empson R.M. Adenosine acting via A1 receptors, controls the transition to status epilepticus-like behaviour in an in vitro model of epilepsy. Neuropharmacology. 2004;47:427-437.
- Kochanek P.M., Vagni V.A., Janesko K.L., Washington C.B., Crumrine P.K., Garman R.H., et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2006;26:565-575.
- Haselkorn M.L., Shellington D.K., Jackson E.K., Vagni V.A., Janesko-Feldman K., Dubey R.K., et al. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma. 2010;27:901-910.
- Diamond M.L., Ritter A.C., Failla M.D., Boles J.A., Conley Y.P., Kochanek P.M., and Wagner A.K. IL-1b associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia. 2015;56:991-1001.
- Pijet B., Stefaniuk M., Kostrzewska-Ksiezyk A., Tsilibary P.E., Tzinia A., and Kaczmarek L. Elevation of MMP-9 levels promotes epileptogenesis after traumatic brain injury. Mol Neurobiol. 2018;55:9294-9306.
- Miszczuk D., DeRbski K.J., Tanila H., Lukasiuk K., and Pitkanen A. Traumatic brain injury increases the expression of Nos1, Ab clearance, and epileptogenesis in APP/PS1 mouse model of Alzheimer’s disease. Mol Neurobiol. 2016;53:7010-7027.
- Bolkvadze T., Puhakka N., and Pitkanen A. Epileptogenesis after traumatic brain injury in Plaur-deficient mice. Epilepsy Behav. 2016;60:187-196.
- Kyyriainen J., Bolkvadze T., Koivisto H., Lipponen A.P., Ekolle Ndode-Ekane X., Tanila H., and Pitkanen A. Deficiency of urokinase-type plasminogen activator and its receptor affects social behavior and increases seizure susceptibility. Epilepsy Res. 2019;151:67-74.
- Darrah S.D., Miller M.A., Ren D., Hoh N.Z., Scanlon J.M., Conley Y.P., and Wagner A.K. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res. 2013;103:180-194.
- Ritter A.C., Kammerer C.M., Brooks M.M., Conley Y.P., and Wagner A.K. Genetic variation in neuronal glutamate transport genes and associations with posttraumatic seizure. Epilepsia. 2016;57:984-993.
- Wagner A.K., Miller M.A., Scanlon J., Ren D., Kocha-nek P.M., and Conley Y.P. Adenosine A1 receptor gene variants associated with post-traumatic seizures after severe TBI. Epilepsy Res. 2010;90:259-272.
- Scher A.I., Wu H., Tsao J.W., Blom H.J., Feit P., Ne-vin R.L., and Schwab K.A. MTHFR C677T genotype as a risk factor for epilepsy including post-traumatic epilepsy in a representative military cohort. J Neurotrauma. 2011;28:1739-1745.
- Miller M.A., Conley Y., Scanlon J.M., Ren D., Ilyas Kamboh M., Niyonkuru C., and Wagner A.K. APOE genetic associations with seizure development after severe traumatic brain injury. Brain Inj. 2010;24:1468-1477.
- Akrami Н., Leahy R.M., Irimia A., Kim P.E., Hecke C.E., Joshi A.A. Neuroanatomic markers of post-traumatic epilepsy based on magnetic resonance imaging and machine learning. Am J Neuroradiol. 2022;43:347-53.
- Lutkenhoff E.S., McArthur D.L., Hua X., et al. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. Neuroimage Clin. 2013;3:396-404. https://doi.org/10.1016/j.nicl.2013.09.010.
- Tomkins O., Feintuch A., Benifla M., et al. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923. https://doi.org/10.1155/2011/765923.
- Shultz S.R., Cardamone L., Liu Y.R., et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia. 2013;54(7):1240-50. https://doi.org/10.1111/epi.12223.
- Kharatishvili I., Immonen R., Gröhn O., Pitkänen A. Quantitative diffusion MRI of hippocampus as a surrogate marker for posttraumatic epileptogenesis. Brain. 2007;130 (Pt. 12):3155-68. https://doi.org/10.1093/brain/awm268.
- Mishra A.M., Bai X., Sanganahalli B.G., et al. Decreased resting functional connectivity after traumatic brain injury in the rat. PLoS One. 2014;9(4):e95280. https://doi.org/10.1371/journal.pone.0095280.
- Gupta R.K., Saksena S., Agarwal A., et al. Diffusion tensor imaging in late posttraumatic epilepsy. Epilepsia. 2005;46(9):1465-71. https://doi.org/10.1111/j.1528-1167.2005.01205.x.
- Mele C., Pagano L., Franciotta D., Caputo M., Nardone A., Aimaretti G., Marzullo P., Pingue V. Thyroid function in the subacute phase of traumatic brain injury: a potential predictor of post‑traumatic neurological and functional outcomes. Journal of Endocrinological Investigation. 2022;45:379-389. https://doi.org/10.1007/s40618-021-01656-8/
- Boylan K.R., Bieling P.J., Marriott M., Begin H., Young L.T., and MacQueen G.M. Impact of comorbid anxiety disorders on outcome in a cohort of patients with bipolar disorder. J Clin Psychiatry. 2004;65:1106-1113.
- Lin W.J., Harnod T., Lin C.L., and Kao C.H. Mortality risk and risk factors in patients with posttraumatic epilepsy: A population-based cohort study. Int J Environ Res Public Health. 2019;16:589.
- Calzolari E., Chepisheva M., Smith R.M., Mahmud M., Hellyer P.J., Tahtis V., et al. Vestibular agnosia in traumatic brain injury and its link to imbalance. Brain. 2021;144:128-143.
- Golub V. and Reddy D.S. Treating neurological diseases through epigenetic inhibition. Іn: Epigenetic Inhibitors and Their Use to Treat Human Diseases (Campeau E, ed.). Wiley & Sons, Hoboken, NJ; 2020. Р. 1-17.
- Madathil S.K., Carlson S.W., Brelsfoard J.M., Ye P., D’Ercole A.J., and Saatman K.E. Astrocyte-specific overexpression of insulin-like growth factor-1 protects hippocampal neurons and reduces behavioral deficits following traumatic brain injury in mice. PLoS One. 2013;8:e67204.
- Mazzini L., Cossa F.M., Angelino E., Campini R., Pastore I., and Monaco F. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia. 2003;44:569-574.
- Christoph Helmstaedter, Juri-Alexander Witt. Cognitive outcome of antiepileptic treatment with levetiracetam versus carbamazepine monotherapy: A non-interventional surveillance trial. Epilepsy and Behavior. 2010;18:74-80.
- Munyon C., Eakin K.C., Sweet J.A., and Miller J.P. Decreased bursting and novel object-specific cell firing in the hippocampus after mild traumatic brain injury. Brain Res. 2014;1582:220-226.
- Carron S.F., Sun M., Shultz S.R., and Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198.
- Paterno R., Folweiler K.A., and Cohen A.S. Pathophysiology and treatment of memory dysfunction after traumatic brain injury. Curr Neurol Neurosci Rep. 2017;17:52.
- Ngadimon I.M., Aledo-Serrano A., Arulsamy A., Mohan D., Khoo C.S.,Cheong W.L., Shaikh M.F. An Interplay Between Post-Traumatic Epilepsy and Associated Cognitive Decline: A Systematic Review. Front Neurol. 2022;24:13:827571. DOI: 10.3389/fneur.2022.827571.
- Mariana Lopez-Gongora, Alejandro Martlnez-Dameno, Car-men Garcia, Antonio Escartfn. Effect of levetiracetam on cognitive functions and quality of life: a one-year follow-up study. Epileptic. Disord. 2008;10(4):297-305.
- Reddy D.S., Thompson W. and Calderara G. Comparative evaluation of experimental models of refractory status epilepticus following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology. 2021;191:108571.
- Alfieri J. Epilepsy in Alzheimer patients: which drug? Poster from 27-th International Epilepsy Congress in Singapore, 2007.
- Brundin L., Bjorkqvist M., Peterse’n A., and Traskman-Bendz L. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol. 2008;17:573-579.
- Biederman J., Feinberg L., Chan J., Adeyemo B.O., Woodworth K.Y., Panis W., et al. Mild traumatic brain injury and attention-deficit hyperactivity disorder in young student athletes. J Nerv Ment Dis. 2015;203:813-819.
- Dickstein S.G., Bannon K., Castellanos F.X., and Milham M.P. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry. 2006;47:1051-1062.
- Burke J. et al. Association of Posttraumatic Epilepsy With 1-Year Outcomes After Traumatic Brain Injury. JAMA Network Open. 2021;4(12):e2140191. doi: 10.1001/jamanetworkopen.2021.40191.
- Baye N.G., Baye F.D., Teshome A.A., Ayenew A.A., Mulu A.T., Abebe E.C., Muche Z.T. Incidence and predictors of early posttraumatic seizures among patients with moderate or severe traumatic brain injury in Northwest Ethiopia: an institution based prospective study. BMC Neurology. 2024;24:41. https://doi.org/10.1186/s12883-024-03536-z.
- Chen Y., Li s., Ge W., Jing J., Chen H.Y., Doherty D., Herman A. Quantitative Epileptiform Burden and Electroencephalography Background Features Predict Post-Traumatic Epilepsy. J Neurol Neurosurg Psychiatry. 2023 March;94(3):245-249. doi: 10.1136/jnnp-2022-329542.
- Saletti P.G., Mowrey W.B., Liu W., Li Q., McCullough J., et al. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open. 2023;8:586-608.
- Durmaz M.O., Doğan A., Ezgü M.C., Kaplan A. Is prophylactic anti-convulsive treatment necessary in subdural hematomas? Ulus Travma Acil Cerrahi Derg. 2023 Aug;29(8).
- Yu T., Liu X., Sun L., Lv R., Wu J., Wang Q. Risk factors for Drug-resistant Epilepsy (DRE) and a nomogram model to predict DRE development in post-traumatic epilepsy patients. CNS Neurosci Ther. 2022;28:1557-1567.
- Locskai L.F., Alyenbaawi H., Allison W.T. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Pharmacol. Toxicol. 2024;64:577-598.
- Servit Z., Musil F. Prophylactic treatment of posttraumatic epilepsy: Results of a long-term follow-up in Czechoslovakia. Epilepsia. 1981;22(3):315-20. PMID: 6786866. DOI: 10.1111/j.1528-1157. 1981.tb04115.x.
- Wohns R.N., Wyler A.R. Prophylactic phenytoin in severe head injuries. J Neurosurg. 1979;51(4):507-9. PMID: 113510. DOI: 10.3171/jns.1979.51.4.0507.
- Young B., Rapp R., Brooks W.H., Madauss W., Norton J.A. Posttraumatic epilepsy prophylaxis. Epilepsia. 1979;20(6):671-81. PMID: 115679. DOI: 10.1111/j.1528-1157.1979.tb04851.x.
- Murri L., Arrigo A., Bonuccelli U., Rossi G., Parenti G. Phenobarbital in the prophylaxis of late posttraumatic seizures. Ital J Neurol Sci. 1992;13(9):755-60. PMID: 1483858. DOI: 10.1007/BF02229161.
- Price D. The efficacy of sodium valproate as the only anticonvulsant administrated to neurosurgical patients. In: Parsonage MJ, Caldwell AD, editors. The place of sodium valproate in the treatment of epilepsy. London (England): Royal Society of Medicine; 1980. Р. 23-34.
- Annegers J.F., Hauser W.A., Coan S.P., Rocca W.A. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338(1):20-24. PMID: 9414327. DOI: 10.1056/NEJM199801013380104.
- Schierhout G., Roberts I. Prophylactic antiepileptic agents after head injury: A systematic review. J Neurol Neurosurg Psychiatry. 1998;64(1):108-12. PMID: 9436738.
- Hazama A., Ziechmann R., Arul M., Krishnamurthy S., Galgano M., and Chin L.S. The effect of keppra prophylaxis on the incidence of early onset, post-traumatic brain injury seizures. Cureus. 2018;10:e2674.
- Chen J.W.Y., Ruff R.L., Eavey R., Wasterlain C.G. Posttraumatic epilepsy and treatment. JRRD. 2009;46(6).
- Atwood R., Walker P., Walper D., Elster E., Bradley M. Use of Levetiracetam for Post-Traumatic Seizure Prophylaxis in Combat-Related Traumatic Brain Injury. Mil Med. 2023 Nov 3;188(11-12):e3570-e3574. doi: 10.1093/milmed/usad192.
- Milligan T.A., Hurwitz S., Bromfield E.B. Efficacy and tolerability of levetiracetam versus phenytoin after supratentorial neurosurgery. Neurology. 2008;71(9):665-669. 10.1212/01.wnl.0000324624.52935.46.
- Sharma R.L. et al. Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci. 2019 Nov 9;9(11):318.
- Shannon T., Levine N., Dirickson R., Shen Y., Cotter C., Rajjoub N., et al. Early hippocampal high-amplitude rhythmic spikes predict post-traumatic epilepsy in mice. Front Neurosci. 2024 Aug 29;18:1422449. doi: 10.3389/fnins.2024.1422449.
- Javalgekar M., Jupp B., Vivash L., O’Brien T.J., Wright D.K., Jones N.C., Ali I. Inflammasomes at the crossroads of traumatic brain injury and post-traumatic epilepsy. J Neuroinflammation. 2024 Jul 16;21(1):172. doi: 10.1186/s12974-024-03167-8.
- Traumatic Brain Injury Management and Basic Neurosurgery in the Deployed Environment. JTS CPG -2023. https://learning-media.allogy.com/api/v1/pdf/1aa68622-1bbe-4eda-b504-ceea06e709d9/contents.
- Лікування та догляд за пацієнтами зі струсом мозку — легкою черепно-мозковою травмою. Клінічна настанова Міністерства у справах ветеранів США (VA) та Міністерства Оборони США (Dod), 2023. https://veteranhub.com.ua/onovlena-nastanova-shhodo-pacziyentiv-zi-strusom-mozku/
- Vezzani A., Friedman A., and Dingledine R.J. The role of inflammation inepileptogenesis. Neuropharmacology. 2013;69:16-24.
- Paudel Y.N., Shaikh M.F., Shah S., Kumari Y., and Othman I. Role ofinflammation in epilepsy and neurobehavioral comorbidities: implication fortherapy. Eur J Pharmacol. 2018;837:145-155.
- Ravizza T. and Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the ratlimbic system. Neuroscience. 2006;137:301-308.
- Vezzani A., Maroso M., Balosso S., Sanchez M.A., and Bartfai T. IL-1 receptor/toll-like receptor signaling in infection, inflammation, stress and neurodegenerationcouples hyperexcitability and seizures. Brain Behav Immun. 2011;25:1281-1289.
- Zhang R., Sun L., Hayashi Y., Liu X., Koyama S., Wu Z., and Nakanishi H. Acute p38-mediated inhibition of NMDA-induced outward currents inhippocampal CA1 neurons by interleukin-1beta. Neurobiol Dis. 2010;38:68-77.
- Galic M.A., Riazi K., Heida J.G., Mouihate A., Four–nier N.M., Spencer S.J., et al. Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci. 2008;28:6904-6913.
- Kelley K.A., Ho L., Winger D., Freire-Moar J., Borelli C.B., Aisen P.S., and Pasinetti G.M. Potentiation of excitotoxicity in transgenic mice overexpressing neuronalcyclooxygenase-2. Am J Pathol. 1999;155:995-1004.
- Holtman L., van Vliet E.A., Edelbroek P.M., Aronica E., and Gorter J.A. Cox-2inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res. 2010;91:49-56.
- Polascheck N., Bankstahl M., and Löscher W. The COX-2 inhibitor parecoxibis neuroprotective but not antiepileptogenic in the pilocarpine model of temporallobe epilepsy. Exp Neurol. 2010;224:219-233.
- Vezzani A., Friedman A., and Dingledine R.J. The role of inflammation inepileptogenesis. Neuropharmacology. 2013;69:16-24.
- Goshen I. and Yirmiya R. The role of pro-inflammatory cytokines in memoryprocesses and neural plasticity, in Psychoneuroimmunology, 4th Edition (Ader R., et al., eds) Elsevier, Inc. Chapter 16; 2007. Р. 337-378.
- Ibrahim S., Hu W., Wang X., Gao X., He C., and Chen J. Traumatic brain injurycauses aberrant migration of adult-born neurons in the hippocampus. Sci Rep. 2016;6:21793.
- Reddy D.S., Thompson W., and Calderara G. Does stress trigger seizures?Evidence from experimental models, in Current Topics in Behavioral. Іn: Neuroscience (Jones N., Kanner A., and Damodharan A., eds). SpringerNature Switzerland AG; 2020. Р. 1-25.
- Rivera C., Li H., Thomas-Crusells J., Lahtinen H., Viitanen T., Nanobashvili A., et al. BDNF-induced TrkBactivation down-regulates the K1-Cl-cotransporter KCC2 and impairs neuronal Cl-extrusion. J Cell Biol. 2002;159:747-752.
- Kulkarni S.K. and Dhir A. Cyclooxygenase in epilepsy: from perception toapplication. Drugs Today (Barc). 2009;45:135-154.
- Dinocourt C., Gallagher S.E., and Thompson S.M. Injury-induced axonalsprouting in the hippocampus is initiated by activation of trkB receptors. Eur JNeurosci. 2006;24:1857-1866.
- Tobin R.P., Mukherjee S., Kain J.M., Rogers S.K., Henderson S.K., Motal H.L., Newell Rogers M.K., and Shapiro L.A. Traumatic brain injury causes selective,CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration. Acta Neuropathol Commun., 2014, 2:143.
- Paudel Y.N., Shaikh M.F., Shah S., Kumari Y., and Othman I. Role ofinflammation in epilepsy and neurobehavioral comorbidities: implication fortherapy. Eur J Pharmacol. 2018;837:145-155.
- Lotrich F.E., Albusaysi S., and Ferrell R.E. Brain-derived neurotrophic factorserum levels and genotype:association with depression during interferon-atreatment. Neuropsychopharmacology. 2013;38:985-99.
- De La Garza I.R. and Asnis G.M. The non-steroidal anti-inflammatory drugdiclofenac sodium attenuates IFN-alpha induced alterations to monoamineturnover in prefrontal cortex and hippocampus. Brain Res. 2003;977:70-79.
- Miller A.H., Maletic V., and Raison C.L. Inflammation and its discontents: therole of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732-741.
- Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., and Kelley K.W. Frominflammation to sickness and depression: when the immune system subjugatesthe brain. Nat Rev Neurosci. 2009;9:46-56.
- Mukherjee S., Zeitouni S., Cavarsan C.F., and Shapiro L.A. Increased seizuresusceptibility in mice 30 days after fluid percussion injury. Front Neurol. 2013;4:2.
- Marchi N., Granata T., Ghosh C., and Janigro D. Blood-brain barrierdysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877-1886.
- Friedman A. Blood-brain barrier dysfunction, status epilepticus, seizures,and epilepsy: a puzzle of a chicken and egg? Epilepsia. 2011;52 (Suppl 8):19-20.
- Marchi N., Angelov L., Masaryk T., Fazio V., Granata T., Hernandez N., et al. Seizure-promoting effect of blood-brainbarrier disruption. Epilepsia. 2007;48:732-742.
- Kraemer D.L. and Awad I.A. Vascular malformations and epilepsy: clinicalconsiderations and basic mechanisms. Epilepsia. 1994;35 (Suppl 6):S30-S43.
- van Vliet E.A., da Costa Araujo S., Redeker S., van Schaik R., Aronica E., and GorterJ.A. Blood-brain barrier leakage may lead to progression of temporal lobeepilepsy. Brain. 2007;130:521-534.
- Raabe A., Schmitz A.K., Pernhorst K., Grote A., von der Brelie C., Urbach H., et al. Cliniconeuropathologic correlations show astroglial albumin storage as acommon factor in epileptogenic vascular lesions. Epilepsia. 2012;53:539-54.
- Tomkins O., Shelef I., Kaizerman I., Eliushin A., Afawi Z., Misk A., et al. Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry. 2008;79:774-777.
- Seiffert E., Dreier J.P., Ivens S., Bechmann I., Tomkins O., Heinemann U., and Friedman A. Lasting blood-brain barrier disruption induces epileptic focusin the rat somatosensory cortex. J Neurosci. 2004;24:7829-7836.
- Ivens S., Kaufer D., Flores L.P., Bechmann I., Zumsteg D., Tomkins O., et al. TGF-beta receptor-mediated albuminuptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535-547.
- Binder D.K. and Steinhäuser C. Functional changes in astroglial cells in epilepsy. Glia. 2006;54:358-368.
- Carver C.M., Chuang S.H., and Reddy D.S. Zinc Selectively BlocksNeurosteroid-Sensitive Extrasynaptic dGABAA Receptors in the Hippocampus. J Neurosci. 2016;36:8070-8077.
- Chuang S.-H. and Reddy D.S. Genetic and molecular regulation ofextrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364:180-197.
- Fabene P.F., Bramanti P., and Constantin G. The emerging role forchemokines in epilepsy. J Neuroimmunol. 2010;224:22-27.
- Yarlagadda A., Alfson E., and Clayton A.H. The blood brain barrier and therole of cytokines in neuropsychiatry. Psychiatry (Edgmont). 2009;6:18-22.
- Hwang J.Y., Aromolaran K.A., and Zukin R.S. The emerging field of epigeneticsin neurodegeneration and neuroprotection. Nat Rev Neurosci. 2017;18:347-361.
- Weber W. Cancer epigenetics. Prog Mol Biol Transl Sci. 2010;95:299-349.
- Younus I. and Reddy D.S. Epigenetic interventions for epileptogenesis: a newfrontier for curing epilepsy. Pharmacol Ther. 2017;177:108-122.
- Nagalakshmi B., Sagarkar S., and Sakharkar A.J. Epigenetic mechanisms oftraumatic brain injuries. Prog Mol Biol Transl Sci. 2018;157:263-298.
- Reddy S.D., Clossen B.L., and Reddy D.S. Epigenetic histone deacetylationinhibition prevents the development and persistence of temporal lobe epilepsy. J Pharmacol Exp Ther. 2018;364:97-109.
- Huang Y., Doherty J.J., and Dingledine R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an earlyevent triggered by status epilepticus. J Neurosci. 2002;22:8422-8428.
- Crosio C., Heitz E., Allis C.D., Borrelli E., and Sassone-Corsi P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specifichistone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci. 2003;116:4905-4914.
- Sng J.C., Taniura H., and Yoneda Y. Histone modifications in kainate-inducedstatus epilepticus. Eur J Neurosci. 2006;23:1269-1282.
- Huang Y., Zhao F., Wang L., Yin H., Zhou C., and Wang X. Increased expressionof histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patientsand rat models. Synapse. 2012;66:151-159.
- Dash P.K., Orsi S.A., and Moore A.N. Histone deacetylase inhibition combinedwith behavioral therapy enhances learning and memory following traumaticbrain injury. Neuroscience. 2009;163:1-8.
- Haghighi F., Ge Y., Chen S., Xin Y., Umali M.U., De Gasperi R., et al. Neuronal DNA methylation profiling of blast-relatedtraumatic brain injury. J Neurotrauma. 2015;32:1200-1209.
- Zhang Z.Y., Zhang Z., Fauser U., and Schluesener H.J. Global hypomethylationdefines a sub-population of reactive microglia/macrophages in experimentaltraumatic brain injury. Neurosci Lett. 2007;429:1-6.
- Zhu B., Eom J., and Hunt R.F. Transplanted interneurons improve memoryprecision after traumatic brain injury. Nat Commun. 2019;10:515.
- Nelson E.D., Kavalali E.T., and Monteggia L.M. Activity-dependent suppressionof miniature neurotransmission through the regulation of DNA methylation. J Neurosci. 2008;28:395-406.
- Levenson J.M., Roth T.L., Lubin F.D., Miller C.A., Huang I.C., Desai P., Malone L.M., and Sweatt J.D. Evidence that DNA (cytosine-5) methyltransferase regulatessynaptic plasticity in the hippocampus. J Biol Chem. 2006;281:15763-15773.
- Dudek F.E. and Spitz M. Hypothetical mechanisms for the cellular andneurophysiologic basis of secondary epileptogenesis: proposed role of synapticreorganization. J Clin Neurophysiol. 1997;14:90-101.
- McCormick D.A. and Contreras D. On the cellular and network bases ofepileptic seizures. Annu Rev Physiol. 2001;63:815-846.
- Hunt R.F., Scheff S.W., and Smith B.N. Synaptic reorganization of inhibitoryhilar interneuron circuitry after traumatic brain injury in mice. J Neurosci. 2011;31:6880-6890.
- Gupta A., Elgammal F.S., Proddutur A., Shah S., and Santhakumar V. Decrease in tonic inhibition contributes to increase in dentate semilunar granulecell excitability after brain injury. J Neurosci. 2012;32:2523-2537.
- Kernie S.G., Erwin T.M., and Parada L.F. Brain remodeling due to neuronaland astrocytic proliferation after controlled cortical injury in mice. J NeurosciRes. 2001;66:317-326.
- Dash P.K., Mach S.A., and Moore A.N. Enhanced neurogenesis in the rodenthippocampus following traumatic brain injury. J Neurosci Res. 2001;63:313-319.
- Gao X., Enikolopov G., and Chen J. Moderate traumatic brain injury promotesproliferation of quiescent neural progenitors in the adult hippocampus. ExpNeurol. 2009;219:516-523.
- Rola R., Mizumatsu S., Otsuka S., Morhardt D.R., Noble-Haeusslein L.J., Fishman K., et al. Alterations in hippocampal neurogenesis followingtraumatic brain injury in mice. Exp Neurol. 2006;202:189-199.
- Danzer S.C. Adult neurogenesis in the development of epilepsy. Epilepsy Curr. 2019;19:316-320.
- Bockaert J. and Marin P. Mtor in brain physiology and pathologies. PhysiolRev. 2015;95:1157-1187.
- Liu J., Reeves C., Michalak Z., Coppola A., Diehl B., Sisodiya S.M., and Thom M. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun. 2014;2:71.
- Chen S., Atkins C.M., Liu C.L., Alonso O.F., Dietrich W.D., and Hu B.R. Alterations in mammalian target of rapamycin signaling pathways aftertraumatic brain injury. J Cereb Blood Flow Metab. 2007;27:939-949.
- Krueger D.A., Wilfong A.A., Holland-Bouley K., Anderson A.E., Agricola K., Tudor C., et al. Everolimus treatment ofrefractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013;74:679-68.