Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Международный эндокринологический журнал Том 20, №4, 2024

Вернуться к номеру

Варіабельність глікемії та діабетична кардіальна автономна нейропатія

Авторы: A.A. Serhiyenko (1), T.V. Tsaryk (2), Y.I. Pavlovskiy (1), V.A. Serhiyenko (1)
(1) - Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
(2) - Prytula Clinic, Lviv, Ukraine

Рубрики: Эндокринология

Разделы: Справочник специалиста

Версия для печати


Резюме

Кардіальна автономна нейропатія (КАН) тісно пов’язана з приблизно п’ятикратним підвищенням ризику серцево-судинної смертності у хворих на цукровий діабет (ЦД). Ураження вегетативної функції при ЦД, що призводить до розвитку КАН, може супроводжуватися ішемією коронарних артерій, порушеннями серцевого ритму, «тихим» інфарктом міокарда, вираженою ортостатичною гіпотензією та синдромом раптової серцевої смерті. В огляді наведено аналіз літературних даних щодо впливу варіабельності глікемії (ВГ) на розвиток діабетичної КАН. Проаналізовано можливі взаємозв’язки між показниками ВГ в осіб із діабетичною КАН, зокрема питання щодо глікемічного конт­ролю і КАН, зв’язок між ВГ і КАН при цукровому діабеті. Незадовільний глікемічний контроль та неконтрольований глікемічний статус вважаються основними чинниками ризику хронічних ускладнень ЦД, зокрема КАН. Збільшення ВГ асоціюється з вищим ризиком хронічних ускладнень ЦД, серцево-судинним ризиком, смертністю від усіх причин та захворюваністю. Результати клінічних випробувань продемонстрували, що час у діапазоні може бути перспективним критерієм оцінки глікемічного контролю й прогнозування розвитку ускладнень діабету. Цей огляд базується на пошуку літератури в базах PubMed та MEDLINE, Scopus, BIOSIS, EMBASE, Google Scholar і Springer Online Archives Collection. Були використані такі ключові слова: варіабельність глікемії, кардіальна автономна нейропатія, цукровий діабет. Для виявлення результатів дослідження, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук публікацій. КАН — одне із найчастіших віддалених ускладнень ЦД, і належний контроль глікемії необхідний для запобігання їм. Визначення варіабельності глікемії може мати переваги щодо прогнозування подальших ускладнень ЦД у клінічних дослідженнях і на практиці. Асоціація вегетативної дисфункції та рівня глюкози, резистентності до інсуліну й варіабельності HbA1c передбачає подальші дослідження для зменшення розвитку хронічних ускладнень. Необхідні подальші дослідження, щоб вивчити механізми ВГ і оцінити їх як терапевтичні мішені при лікуванні пацієнтів із ЦД 2-го типу.

Cardiac autonomic neuropathy (CAN) is closely associated with an approximately five-fold increase in the risk of cardiovascular mortality in patients with diabetes mellitus (DM). Impaired autonomic function of the cardiovascular system in DM, which leads to the development of CAN, can be accompanied by coronary artery ischemia, heart rhythm disturbances, “silent” myocardial infarction, severe orthostatic hypotension, and sudden cardiac death syndrome. The article provides an analysis of literature data on the impact of glycemic variability (GV) on diabetic CAN development. This review analyzed the possible relationships between GV in people with diabetic CAN. In particular, the issues related to glycemic control and CAN, the link between GV and CAN in diabetes were analyzed. Unsatisfactory glycemic control and uncontrolled glycemic status are considered the main risk factors for chronic complications of DM, in particular CAN. An increase of GV is associated with a higher risk of chronic complications of DM, cardiovascular risk, all-cause mortality and morbidity. The clinical trial results demonstrated that time in range might be a promising metric for assessing glycemic control and prognosis of diabetic complications. This review is based on a search in PubMed and MEDLINE, Scopus, BIOSIS, EMBASE, Google Scholar and Springer Online Archives Collection. The following keywords were used: glycemic variability, cardiac autonomic neuropathy and diabetes mellitus. Research findings missed by the web search have been identified through a manual search of the bibliography of publications. CAN is one of the frequent long-term complications of DM, and reasonable control of GV may be necessary for its prevention. Determination of GV may have advantages for predicting future complications of DM in clinical trials and practice. The association of autonomic dysfunction and glucose levels, insulin resistance, and HbA1c variability suggest further research to reduce chronic complications development. Further investigation is needed to study the mechanisms of GV and evaluate them as therapeutic targets in the treatment of patients with T2DM.


Ключевые слова

цукровий діабет; кардіальна автономна нейропатія; варіабельність глікемії

diabetes mellitus; cardiac autonomic neuropathy; glycemic variability


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. López-Otín C, Kroemer G. Hallmarks of Health. Cell. 2021 Jan 7;184(1):33-63. doi: 10.1016/j.cell.2020.11.034.
  2. Ayyar VS, Sukumaran S. Circadian rhythms: influence on physiology, pharmacology, and therapeutic interventions. J Pharmacokinet Pharmacodyn. 2021 Jun;48(3):321-338. doi: 10.1007/s10928-021-09751-2.
  3. Cherkas A, Eckl P, Gueraud F, Abrahamovych O, et al. Helicobacter pylori in sedentary men is linked to higher heart rate, sympathetic activity, and insulin resistance but not inflammation or oxidative stress. Croat Med J. 2016 Apr 23;57(2):141-149. doi: 10.3325/cmj.2016.57.141.
  4. Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol. 2019 Jul;16(7):437-447. doi: 10.1038/s41569-019-0167-4.
  5. Zhang T, Du X, Gu Y, et al. Analysis of Diurnal Variations in Heart Rate: Potential Applications for Chronobiology and Cardiovascular Medicine. Front Physiol. 2022 Mar 8;13:835198. doi: 10.3389/fphys.2022.835198.
  6. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul. 2022 Oct 20;56(4):284-294. doi: 10.2478/enr-2022-0031.
  7. Hariri A, Mirian M, Zarrabi A, et al. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausan–ne). 2023 Jun 27;14:1156757. doi: 10.3389/fendo.2023.1156757.
  8. Belli M, Bellia A, Sergi D, Barone L, Lauro D, Barillà F. Glucose variability: a new risk factor for cardiovascular disease. Acta Diabetol. 2023 Oct;60(10):1291-1299. doi: 10.1007/s00592-023-02097-w.
  9. Suh S, Kim JH. Glycemic Variability: How Do We Measure It and Why Is It Important? Diabetes Metab J. 2015 Aug;39(4):273-282. doi: 10.4093/dmj.2015.39.4.273.
  10. Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and ma–nagement. World J Diabetes. 2018 Jul 15;9(7):99-114. doi: 10.4239/wjd.v9.i7.99.
  11. Pop-Busui R, Evans GW, Gerstein HC, et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010 Jul;33(7):1578-1584. doi: 10.2337/dc10-0125.
  12. Ziegler D, Porta M, Papanas N, et al. The Role of Biofactors in Diabetic Microvascular Complications. Curr Diabetes Rev. 2022;18(4):e250821195830. doi: 10.2174/1871527320666210825112240.
  13. Spallone V, Ziegler D, Freeman R, et al.; Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011 Oct;27(7):639-653. doi: 10.1002/dmrr.1239.
  14. Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care. 2017 Jan;40(Suppl 1):S4-S5. doi: 10.2337/dc17-S003.
  15. Sudo SZ, Montagnoli TL, Rocha BS, Santos AD, de Sá MPL, Zapata-Sudo G. Diabetes-Induced Cardiac Autonomic Neuropathy: Impact on Heart Function and Prognosis. Biomedicines. 2022 Dec 15;10(12):3258. doi: 10.3390/biomedicines10123258.
  16. Williams S, Raheim SA, Khan MI, et al. Cardiac Autonomic Neuropathy in Type 1 and 2 Diabetes: Epidemiology, Pathophysio–logy, and Management. Clin Ther. 2022 Oct;44(10):1394-1416. doi: 10.1016/j.clinthera.2022.09.002.
  17. Gad H, Elgassim E, Mohammed I, et al. Cardiovascular autonomic neuropathy is associated with increased glycemic variability driven by hyperglycemia rather than hypoglycemia in patients with dia–betes. Diabetes Res Clin Pract. 2023 Jun;200:110670. doi: 10.1016/j.diabres.2023.110670.
  18. Moţăţăianu A, Maier S, Bajko Z, Voidazan S, Bălaşa R, Stoian A. Cardiac autonomic neuropathy in type 1 and type 2 diabetes patients. BMC Neurol. 2018 Aug 27;18(1):126. doi: 10.1186/s12883-018-1125-1.
  19. Agashe S, Petak S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist Debakey Cardiovasc J. 2018 Oct-Dec;14(4):251-256. doi: 10.14797/mdcj-14-4-251.
  20. Serhiyenko V, Serhiyenko A. Diabetic Cardiac Autonomic Neuropathy. In: Rodriguez-Saldana J, ed. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues, Second Edition. Switzerland: Springer Nature; 2023. 939-966. doi: 10.1007/978-3-030-11815-0_53.
  21. Fisher VL, Tahrani AA. Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes Metab Syndr Obes. 2017 Oct 6;10:419-434. doi: 10.2147/DMSO.S129797.
  22. Spallone V. Update on the Impact, Diagnosis and Management of Cardiovascular Autonomic Neuropathy in Diabetes: What Is Defined, What Is New, and What Is Unmet. Diabetes Metab J. 2019 Feb;43(1):3-30. doi: 10.4093/dmj.2018.0259.
  23. Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequen–ces, diagnosis and treatment. World J Diabetes. 2015 Feb 15;6(1):80-91. doi: 10.4239/wjd.v6.i1.80.
  24. Duque A, Mediano MFF, De Lorenzo A, Rodrigues LF Jr. Cardiovascular autonomic neuropathy in diabetes: Pathophysiology, clinical assessment and implications. World J Diabetes. 2021 Jun 15;12(6):855-867. doi: 10.4239/wjd.v12.i6.855.
  25. Achmad C, Lim NS, Pramudyo M, et al. Relation Between Glycemic Control and Cardiac Autonomic Neuropathy in Patients With Diabetes Mellitus Type 2. Curr Probl Cardiol. 2023 Jul;48(7):101135. doi: 10.1016/j.cpcardiol.2022.101135.
  26. Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med. 1980 Feb;92(2 Pt 2):308-311. doi: 10.7326/0003-4819-92-2-308.
  27. Serra C, Sestu A, Murru V, Greco G, Vacca M, Scuteri A. Diabetes Affects the Relationship between Heart Rate Variability and Arterial Stiffness in a Gender-Specific Manner. J Clin Med. 2022 Aug 23;11(17):4937. doi: 10.3390/jcm11174937.
  28. Serhiyenko VA, Serhiyenko AA, Segin VB, Serhiyenko LM. Association of arterial stiffness, N-terminal pro-brain natriuretic peptide, insulin resistance, and left ventricular diastolic dysfunction with diabetic cardiac autonomic neuropathy. Vessel Plus. 2022 Feb 17;6:11. doi: 10.20517/2574-1209.2021.83.
  29. Coppola A, Conte S, Pastore D, Chiereghin F, Donadel G. Multifractal Heart Rate Value Analysis: A Novel Approach for Diabetic Neuropathy Diagnosis. Healthcare (Basel). 2024 Jan 17;12(2):234. doi: 10.3390/healthcare12020234.
  30. American Diabetes Association. Standards of Medical Care in Diabetes-2019 Abridged for Primary Care Providers. Clin Diabetes. 2019 Jan;37(1):11-34. doi: 10.2337/cd18-0105.
  31. Sakamoto M. Type 2 Diabetes and Glycemic Variability: Various Parameters in Clinical Practice. J Clin Med Res. 2018 Oct;10(10):737-742. doi: 10.14740/jocmr3556w.
  32. Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019 Mar;7(3):221-230. doi: 10.1016/S2213-8587(18)30136-0.
  33. Meher M, Panda JK. Impact of glycemic control over cardiac autonomic neuropathy. J Diabetes Metab Disord. 2020 Oct 8;19(2):1339-1344. doi: 10.1007/s40200-020-00653-7.
  34. Breyton AE, Lambert-Porcheron S, Laville M, Vinoy S, Nazare JA. CGMS and Glycemic Variability, Relevance in Clinical Research to Evaluate Interventions in T2D, a Literature Review. Front Endocrinol (Lausanne). 2021 Sep 9;12:666008. doi: 10.3389/fendo.2021.666008.
  35. Hirsch IB. Glycemic Variability and Diabetes Complications: Does It Matter? Of Course It Does! Diabetes Care. 2015 Aug;38(8):1610-1614. doi: 10.2337/dc14-2898.
  36. Umpierrez GE, Kovatchev BP. Glycemic Variability: How to Measure and Its Clinical Implication for Type 2 Diabetes. Am J Med Sci. 2018 Dec;356(6):518-527. doi: 10.1016/j.amjms.2018.09.010.
  37. Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi Khalil C. Macrovascular Complications in Patients with Diabetes and Prediabetes. Biomed Res Int. 2017;2017:7839101. doi: 10.1155/2017/7839101.
  38. Shimabukuro M, Tanaka A, Sata M, et al.; Collaborators on the Effect of Miglitol on Glucose Metabolism in Acute Coronary Syndrome (MACS) Study. α-glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with type 2 diabetes and acute coronary syndrome: a multicenter randomized controlled (MACS) study. Cardiovasc Diabetol. 2017 Jul 6;16(1):86. doi: 10.1186/s12933-017-0571-1.
  39. Matsutani D, Sakamoto M, Minato S, et al. Visit-to-visit HbA1c variability is inversely related to baroreflex sensitivity independently of HbA1c value in type 2 diabetes. Cardiovasc Diabetol. 2018 Jul 10;17(1):100. doi: 10.1186/s12933-018-0743-7.
  40. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019 Aug;42(8):1593-1603. doi: 10.2337/dci19-0028.
  41. Gabbay MAL, Rodacki M, Calliari LE, et al. Time in range: a new parameter to evaluate blood glucose control in patients with diabetes. Diabetol Metab Syndr. 2020 Mar 16;12:22. doi: 10.1186/s13098-020-00529-z.
  42. Yapanis M, James S, Craig ME, O’Neal D, Ekinci EI. Complications of Diabetes and Metrics of Glycemic Management Derived From Continuous Glucose Monitoring. J Clin Endocrinol Metab. 2022 May 17;107(6):e2221-e2236. doi: 10.1210/clinem/dgac034.
  43. Leksic G, Baretić M, Gudelj L, et al. Glycemic Variability in Type 1 Diabetes Mellitus Pregnancies — Novel Parameters in Predicting Large-for-Gestational-Age Neonates: A Prospective Cohort Study. Biomedicines. 2022 Sep 2;10(9):2175. doi: 10.3390/biomedicines10092175.
  44. Lee J, Yun JS, Ko SH. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients. 2022 Jul 27;14(15):3086. doi: 10.3390/nu14153086.
  45. Breder ISS, Sposito AC. Cardiovascular autonomic neuro–pathy in type 2 diabetic patients. Rev Assoc Med Bras (1992). 2019 Jan;65(1):56-60. doi: 10.1590/1806-9282.65.1.56.
  46. Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol. 2020 Sep 15;11:529075. doi: 10.3389/fphys.2020.529075.
  47. Shah MS, Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res. 2016 May 27;118(11):1808-1829. doi: 10.1161/CIRCRESAHA.116.306923.
  48. Livingstone R, Boyle JG, Petrie JR. How tightly controlled do fluctuations in blood glucose levels need to be to reduce the risk of developing complications in people with type 1 diabetes? Diabet Med. 2020 Apr;37(4):513-521. doi: 10.1111/dme.13911.
  49. Chakarova N, Dimova R, Grozeva G, Tankova T. Assessment of glucose variability in subjects with prediabetes. Diabetes Res Clin Pract. 2019 May;151:56-64. doi: 10.1016/j.diabres.2019.03.038.
  50. Hirsch IB, Welsh JB, Calhoun P, Puhr S, Walker TC, Price DA. Associations between HbA1c and continuous glucose monito–ring-derived glycaemic variables. Diabet Med. 2019 Dec;36(12):1637-1642. doi: 10.1111/dme.14065.
  51. Dimova R, Chakarova N, Grozeva G, Tankova T. Eva–luation of the relationship between cardiac autonomic function and glucose variability and HOMA-IR in prediabetes. Diab Vasc Dis Res. 2020 May-Jun;17(5):1479164120958619. doi: 10.1177/1479164120958619.
  52. Huang L, Pan Y, Zhou K, Liu H, Zhong S. Correlation Between Glycemic Variability and Diabetic Complications: A Narrative Review. Int J Gen Med. 2023 Jul 21;16:3083-3094. doi: 10.2147/IJGM.S418520.
  53. Jun JE, Jin SM, Baek J, et al. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015 Jun 4;14:70. doi: 10.1186/s12933-015-0233-0.
  54. Azad N, Emanuele NV, Abraira C, Henderson WG, Colwell J, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complications. 1999 Sep-Dec;13(5–6):307-313. doi: 10.1016/s1056-8727(99)00062-8.
  55. Xu W, Zhu Y, Yang X, et al. Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int J Cardiol. 2016 Jul 15;215:263-268. doi: 10.1016/j.ijcard.2016.04.078.
  56. Kalopita S, Liatis S, Thomakos P, et al. Relationship between autonomic nervous system function and continuous interstitial glucose measurement in patients with type 2 diabetes. J Diabetes Res. 2014;2014:835392. doi: 10.1155/2014/835392.
  57. DeVries JH. Glucose variability: where it is important and how to measure it. Diabetes. 2013 May;62(5):1405-1408. doi: 10.2337/db12-1610.
  58. Zhang X, Yang X, Sun B, Zhu C. Perspectives of glycemic variability in diabetic neuropathy: a comprehensive review. Commun Biol. 2021 Dec 7;4(1):1366. doi: 10.1038/s42003-021-02896-3.
  59. Matsushita Y, Takata Y, Kawamura R, Takakado M, Hadate T, Osawa H. The fluctuation in sympathetic nerve activity around wake-up time was positively associated with not only morning but also daily glycemic variability in subjects with type 2 diabetes. Diabetes Res Clin Pract. 2019 Jun;152:1-8. doi: 10.1016/j.diabres.2019.04.029.
  60. Jun JE, Lee SE, Choi MS, Park SW, Hwang YC, Kim JH. Clinical factors associated with the recovery of cardiovascular autonomic neuropathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2019 Mar 11;18(1):29. doi: 10.1186/s12933-019-0830-4.
  61. Wei F, Sun X, Zhao Y, Zhang H, Diao Y, Liu Z. Excessive visit-to-visit glycemic variability independently deteriorates the progression of endothelial and renal dysfunction in patients with type 2 diabetes mellitus. BMC Nephrol. 2016 Jul 7;17(1):67. doi: 10.1186/s12882-016-0300-0.
  62. Yang CY, Su PF, Hung JY, Ou HT, Kuo S. Comparative predictive ability of visit-to-visit HbA1c variability measures for microvascular disease risk in type 2 diabetes. Cardiovasc Diabetol. 2020 Jul 6;19(1):105. doi: 10.1186/s12933-020-01082-9.
  63. Davies MJ, Aroda VR, Collins BS, et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022 Nov 1;45(11):2753-2786. doi: 10.2337/dci22-0034.
  64. Lu J, Ma X, Zhou J, et al. Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care. 2018 Nov;41(11):2370-2376. doi: 10.2337/dc18-1131.
  65. American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S97-S112. doi: 10.2337/dc22-S007.
  66. Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci Technol. 2019 Jul;13(4):614-626. doi: 10.1177/1932296818822496.
  67. Cherkas A, Abrahamovych O, Golota S, et al. The correlations of glycated hemoglobin and carbohydrate metabolism parameters with heart rate variability in apparently healthy sedentary young male subjects. Redox Biology. 2015 Aug;5:301-307. doi: 10.1016/j.redox.2015.05.007.
  68. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019 Feb;21(2):81-85. doi: 10.1089/dia.2018.0310.
  69. Guo Q, Zang P, Xu S, et al. Time in Range, as a Novel Metric of Glycemic Control, Is Reversely Associated with Presence of Diabetic Cardiovascular Autonomic Neuropathy Independent of HbA1c in Chinese Type 2 Diabetes. J Diabetes Res. 2020 Feb 6;2020:5817074. doi: 10.1155/2020/5817074.
  70. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017 Dec;40(12):1631-1640. doi: 10.2337/dc17-1600.
  71. Young LA, Buse JB, Weaver MA, et al.; Monitor Trial Group. Glucose Self-monitoring in Non-Insulin-Treated Patients With Type 2 Diabetes in Primary Care Settings: A Randomized Trial. JAMA Intern Med. 2017 Jul 1;177(7):920-929. doi: 10.1001/jamainternmed.2017.1233.
  72. American Diabetes Association Professional Practice Committee. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S83-S96. doi: 10.2337/dc22-S006.
  73. Wu TE, Su YW, Chen HS. Mean HbA1c and HbA1c variability are associated with differing diabetes-related complications in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2022 Oct;192:110069. doi: 10.1016/j.diabres.2022.110069.
  74. Mannucci E, Antenore A, Giorgino F, Scavini M. Effects of Structured Versus Unstructured Self-Monitoring of Blood Glucose on Glucose Control in Patients With Non-insulin-treated Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. J Diabetes Sci Technol. 2018 Jan;12(1):183-189. doi: 10.1177/ 1932296817719290.
  75. Poonoosamy J, Lopes P, Huret P, et al. Impact of Intensive Glycemic Treatment on Diabetes Complications — A Systematic Review. Pharmaceutics. 2023 Jun 22;15(7):1791. doi: 10.3390/pharmaceutics15071791.

Вернуться к номеру