Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Всесвітній день боротьби із запальними захворюваннями кишечника
день перший
день другий

Коморбідний ендокринологічний пацієнт

Международный эндокринологический журнал Том 20, №1, 2024

Вернуться к номеру

Посттравматичний стресовий розлад, дисомнії та метаболічний синдром

Авторы: Сергієнко В.О. (1), Сегін В.Б. (1), Паньків В.І. (2), Сергієнко О.О. (1)
(1) - Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
(2) - Український науково-практичний центр ендокринної хірургії, трансплантації ендокринних органів і тканин МОЗ України, м. Київ, Україна

Рубрики: Эндокринология

Разделы: Справочник специалиста

Версия для печати


Резюме

Посттравматичний стресовий розлад (ПТСР) і метаболічний синдром (МС) часто є коморбідними захворюваннями і мають спільні нейробіологічні й клінічні ознаки. Зокрема, результати метааналізів свідчать про більшу поширеність МС у пацієнтів із ПТСР порівняно із загальною популяцією. У той же час ПТСР також є відомим чинником ризику МС. Цей збіг можна частково пояснити залученням спільних патогенетичних механізмів, притаманних обом станам. До них належать генетичні фактори, дисфункція гіпоталамо-гіпофізарно-адреналової осі, хронічне запалення низької інтенсивності, оксидантний стрес, інсулінорезистентність і порушення імунної регуляції. Отже, до клінічного погіршення ПТСР і розвитку несприятливих серцево-судинних подій, пов’язаних з МС, причетні подібні механізми. Дисомнії є однією з характерних клінічних особливостей ПТСР. На сьогодні вважається, що посттравматичні порушення циркадного ритму сну — це ядро, а не вторинна особливість ПТСР, вони опосередковують нейробіологічні кореляти розладів унаслідок дисбалансу гомеостазу. У той же час дисомнії, хронодеструкція і депресивні розлади є частиною патогенезу інсулінової резистентності, ожиріння і МС. Отже, лікування дисомній є одним із ключових завдань профілактики й лікування коморбідних ПТСР і МС. Регулювання процесів сну і циркадних ритмів за допомогою екзогенного втручання (зокрема, використання мелатонінергічних лікарських засобів), імовірно, може відігравати центральну роль у профілактиці й лікуванні дисомній при коморбідних ПТСР і МС. Метою цього огляду є аналіз особливостей взаємозв’язків між ПТСР і МС, ПТСР і дисомніями, МС і порушеннями сну. Пошук проводився в SCOPUS, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використані ключові слова «посттравматичний стресовий розлад», «дисомнії», «хронодеструкція», «метаболічний синдром». Для виявлення результатів досліджень, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

Post-traumatic stress disorder (PTSD) and metabolic syndrome (MetS) frequently coexist and share neurobiological and clinical features. In particular, the results of meta-analyses indicate a higher prevalence of MetS in patients with PTSD compared to the general population. PTSD is also a recognized risk factor for MetS. This synchronicity can be partially explained by pathogenetic pathways present in both conditions. These include genetic factors, dysfunction of the hypothalamic-pituitary-adrenal axis, chronic low-grade inflammation, oxidative stress, insulin resistance, and immune dysregulation. Thus, similar mechanisms are involved in the clinical worsening of PTSD and the development of adverse cardiovascular events associated with MetS. Dyssomnias are one of the characteristic clinical features of PTSD. Today, it is believed that posttraumatic circadian rhythm disorders are the core and not a secondary feature of PTSD, which mediate the neurobiological correlates of disorders due to homeostasis imbalance. At the same time, dyssomnias, chronodestruction, and depressive disorders are part of the pathogenesis of insulin resistance, obesity, and MetS. Thus, treatment of dyssomnias is one of the key tasks in the prevention and treatment of comorbid PTSD and MetS. Regulation of sleep processes and circadian rhythms through exogenous intervention, especially with melatonergic drugs, is likely to be a key part of preventing and treating dyssomnias in people who have both PTSD and MetS. The purpose of this review is to analyze the specifics of the relationships between PTSD and MetS, PTSD and dyssomnias, MetS and sleep disorders. We conducted the search in Scopus, Science Direct (from Elsevier), and PubMed, including Medline databases. The key words used were “post-traumatic stress disorder,” “dyssomnias,” “chronodestruction,” and “metabolic syndrome”. The identification of research findings that were not found during online searches involved manual searching of the bibliography of publications.


Ключевые слова

посттравматичний стресовий розлад; метаболічний синдром; дисомнії; хронодеструкція; огляд

post-traumatic stress disorder; metabolic syndrome; dyssomnias; chronodestruction; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct 17. 396(10258). 1204-1222. doi: 10.1016/S0140-6736(20)30925-9.
  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington: American Psychiatric Pub. 2013. 280 р. doi: 10.1176/appi.books.97808904 25596.744053.
  3. Serhiyenko V., Holzmann K., Holota S., Derkach Z., Nerse–syan A., Melnyk S., Chernysh O. et al. An exploratory study of physiological and biochemical parameters to identify simple, robust, and relevant biomarkers for therapeutic interventions for PTSD: study rationale, key elements of design and a context of war in Ukraine. Proc. Shevchenko Sci. Soc. Med. Sci. 2022 Dec 13. 69(2). 1-12. doi: 10.25040/ntsh2022.02.14.
  4. Dell’Oste V., Fantasia S., Gravina D., Palego L., Betti L., Dell’Osso L. et al. Metabolic and inflammatory response in post-traumatic stress disorder (PTSD): A systematic review on peripheral neuroimmune biomarkers. Int. J. Environ. Res. Public Health. 2023 Feb 8. 20(4). 2937. doi: 10.3390/ijerph20042937.
  5. Nilaweera D., Phyo A.Z.Z., Teshale A.B., Htun H.L., Wrigglesworth J., Gurvich C. et al. Lifetime posttraumatic stress disorder as a predictor of mortality: a systematic review and meta-analysis. BMC Psychiatry. 2023 Apr 10. 23(1). 229. doi: 10.1186/s12888-023-04716-w.
  6. Maguire D.G., Ruddock M.W., Milanak M.E., Moore T., Cobice D., Armour C. Sleep, a governor of morbidity in PTSD: A systema–tic review of biological markers in PTSD-related sleep disturbances. Nat. Sci. Sleep. 2020 Jul 31. 12. 545-562. doi: 10.2147/NSS.S260734.
  7. Ahmadi R., Rahimi-Jafari S., Olfati M., Javaheripour N., Emamian F., Ghadami M.R. et al. Insomnia and post-traumatic stress disorder: A meta-analysis on interrelated association (n = 57,618) and prevalence (n = 573,665). Neurosci. Biobehav. Rev. 2022 Oct. 141. 104850. doi: 10.1016/j.neubiorev.2022.104850.
  8. Doan S.N., Patel S.K., Xie B., Nelson R.A., Yee L.D. Disrupting the mood and obesity cycle: the potential role of metformin. Obesities. 2023 Feb 27. 3(1). 59-75. doi: 10.3390/obesities3010006.
  9. Shimobayashi M., Albert V., Woelnerhanssen B., Frei I.C., Weissenberger D., Meyer-Gerspach A.C., Clement N. et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Invest. 2018 Apr 2. 128(4). 1538-1550. doi: 10.1172/JCI96139.
  10. Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017 Nov. 13(11). 633-643. doi: 10.1038/nrendo.2017.90.
  11. Ziegler D., Porta M., Papanas N., Mota M., Jermendy G., Beltramo E. et al. The role of biofactors in diabetic microvascular complications. Curr. Diabetes Rev. 2022 Apr 6. 18(4). e250821195830. doi: 10.2174/1871527320666210825112240.
  12. Michopoulos V., Powers A., Gillespie C.F., Ressler K.J., Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology. 2017 Jan. 42(1). 254-270. doi: 10.1038/npp.2016.146.
  13. Aaseth J., Roer G.E., Lien L., Bjørklund G. Is there a relationship between PTSD and complicated obesity? A review of the literature. Biomed. Pharmacother. 2019 Sep. 117. 108834. doi: 10.1016/j.biopha.2019.108834.
  14. Bartoli F., Crocamo C., Alamia A., Amidani F., Paggi E., Pini E. et al. Posttraumatic stress disorder and risk of obesity: systema–tic review and meta-analysis. J. Clin. Psychiatry. 2015 Oct. 76(10). e1253-61. doi: 10.4088/JCP.14r09199.
  15. Rosenbaum S., Stubbs B., Ward P.B., Steel Z., Lederman O., Vancampfort D. The prevalence and risk of metabolic syndrome and its components among people with posttraumatic stress disorder: a systematic review and meta-analysis. Metabolism. 2015 Aug. 64(8). 926-933. doi: 10.1016/j.metabol.2015.04.009.
  16. Yerokhovych V., Komisarenko Y., Karpenko O., Pankiv V., Kobyliak N., Bobryk M. et al. Assessment of renal and cardiovascular risks in patients with type 2 diabetes when using non-steroidal mine–ralocorticoid receptor antagonists. International Journal of Endocrino–logy (Ukraine). 2023. 19(8). 579-585. https://doi.org/10.22141/2224-0721.19.8.2023.1341.
  17. Luckhoff H.K., du Plessis S., Leigh van den H., Emsley R., Seedat S. Independent effects of posttraumatic stress disorder diagnosis and metabolic syndrome status on prefrontal cortical thickness and subcortical gray matter volumes. Dialogues Clin. Neurosci. 2023 Dec. 25(1). 64-74. doi: 10.1080/19585969.2023.2237525.
  18. Firth J., Siddiqi N., Koyanagi A., Siskind D., Rosenbaum S., Galletly C. et al. The Lancet Psychiatry Commission: A blueprint for protecting physical health in people with mental illness. Lancet Psychiatry. 2019 Aug. 6(8). 675-712. doi: 10.1016/S2215-0366(19)30132-4.
  19. Chen A., Rosenbaum S., Wells R., Gould K., Ward P.B., Steel Z. Obesity, physical activity and sleep quality in patients admitted to a posttraumatic stress inpatient ward. Australas Psychiatry. 2020 Jun. 28(3). 270-273. doi: 10.1177/1039856220917075.
  20. Mansur R.B., Brietzke E., McIntyre R.S. Is there a “metabo–lic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci. Biobehav. Rev. 2015 May. 52. 89-104. doi: 10.1016/j.neubiorev.2014.12.017.
  21. Deleskog A., Ljung R., Forsell Y., Nevriana A., Almas A., Möller J. Severity of depression, anxious distress and the risk of type 2 diabetes — a population-based cohort study in Sweden. BMC Public Health. 2019 Aug 27. 19(1). 1174. doi: 10.1186/s12889-019-7322-z.
  22. Newcomer J.W., Eriksson H., Zhang P., Meehan S.R., Weiss C. Changes in metabolic parameters and body weight in patients with major depressive disorder treated with adjunctive brexpiprazole: pooled analysis of phase 3 clinical studies. J. Clin. Psychiatry. 2019 Oct 1. 80(6). 18m12680. doi: 10.4088/JCP.18m12680.
  23. Puzhko S., Aboushawareb S.A.E., Kudrina I., Schuster T., Barnett T.A., Renoux C., Bartlett G. Excess body weight as a predictor of response to treatment with antidepressants in patients with depressive disorder. J. Affect. Disord. 2020 Apr. 15. 267. 153-170. doi: 10.1016/j.jad.2020.01.113.
  24. Duman R.S., Aghajanian G.K., Sanacora G., Krystal J.H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 2016 Mar. 22(3). 238-249. doi: 10.1038/nm.4050.
  25. Singh M.K., Leslie S.M., Packer M.M., Zaiko Y.V., Phillips O.R., Weisman E.F. et al. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Horm. Behav. 2019 Feb. 108. 73-83. doi: 10.1016/j.yhbeh.2018.03.009.
  26. Casanova F., O’Loughlin J., Martin S., Beaumont R.N., Wood A.R., Watkins E.R. et al. Higher adiposity and mental health: causal inference using Mendelian randomization. Hum. Mol. Genet. 2021 Nov 30. 30(24). 2371-2382. doi: 10.1093/hmg/ddab204.
  27. Serhiyenko V., Serhiyenko A., Segin V., Serhiyenko L. Association of arterial stiffness, N-terminal pro-brain natriuretic peptide, insulin resistance, and left ventricular diastolic dysfunction with diabetic cardiac autonomic neuropathy. Vessel. Plus. 2022 Feb 17. 6. 11. doi: 10.20517/2574-1209.2021.83.
  28. Vancampfort D., Rosenbaum S., Ward P.B., Steel Z., Lederman O., Lamwaka A.V. et al. Type 2 diabetes among people with posttraumatic stress disorder: systematic review and meta-analysis. Psychosom. Med. 2016 May. 78(4). 465-473. doi: 10.1097/PSY.0000000000000297.
  29. Milaneschi Y., Simmons W.K., van Rossum E.F.C., Penninx B.W. Depression and obesity: evidence of shared biological mechanisms. Mol. Psychiatry. 2019 Jan. 24(1). 18-33. doi: 10.1038/s41380-018-0017-5.
  30. Khandaker G.M., Cousins L., Deakin J., Lennox B.R., Yol–ken R., Jones P.B. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015 Mar. 2(3). 258-270. doi: 10.1016/S2215-0366(14)00122-9.
  31. Köhler C.A., Freitas T.H., Maes M., de Andrade N.Q., Liu C.S., Fernandes B.S. et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta. Psychiatr. Scand. 2017 May. 135(5). 373-387. doi: 10.1111/acps.12698.
  32. Perry B.I., Khandaker G.M., Marwaha S., Thompson A., Zammit S., Singh S.P., Upthegrove R. Insulin resistance and obesity, and their association with depression in relatively young people: findings from a large UK birth cohort. Psychol. Med. 2020 Mar. 50(4). 556-565. doi: 10.1017/S0033291719000308.
  33. Anothaisintawee T., Reutrakul S., Van Cauter E., Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med. Rev. 2016 Dec. 30. 11-24. doi: 10.1016/j.smrv.2015.10.002.
  34. Richards A., Kanady J.C., Neylan T.C. Sleep disturbance in PTSD and other anxiety-related disorders: an updated review of clinical features, physiological characteristics, and psychological and neurobiological mechanisms. Neuropsychopharmacology. 2020 Jan. 45(1). 55-73. doi: 10.1038/s41386-019-0486-5.
  35. Nasir N.F.M., Draman N., Zulkifli M.M., Muhamad R., Draman S. Sleep quality among patients with type 2 diabetes: A Cross-Sectional Study in the East Coast Region of Peninsular Malaysia. Int. J. Environ. Res. Public Health. 2022 Apr 25. 19(9). 5211. doi: 10.3390/ijerph19095211.
  36. Lou P., Qin Y., Zhang P., Chen P., Zhang L., Chang G. et al. Association of sleep quality and quality of life in type 2 diabetes mellitus: a cross-sectional study in China. Diabetes Res. Clin. Pract. 2015 Jan. 107(1). 69-76. doi: 10.1016/j.diabres.2014.09.060.
  37. Darraj A. The Link Between Sleeping and Type 2 Diabetes: A Systematic Review. Cureus. 2023 Nov 3. 15(11). e48228. doi: 10.7759/cureus.48228.
  38. Hashimoto Y., Sakai R., Ikeda K., Fukui M. Association between sleep disorder and quality of life in patients with type 2 diabetes: a cross-sectional study. BMC Endocr. Disord. 2020 Jun 30. 20(1). 98. doi: 10.1186/s12902-020-00579-4.
  39. Jain A., Sharmab R., Yadavc N., Chaudhary P., Jainc G., Maanju M. Quality of life and its association with insomnia and clinical variables in type 2 diabetes. J. Egypt. Public Health Assoc. 2017 Mar 1. 92(1). 52-59. doi: 10.21608/epx.2018.7011.
  40. Siwasaranond N., Nimitphong H., Manodpitipong A., Saetung S., Chirakalwasan N., Thakkinstian A., Reutrakul S. The relationship between diabetes-related complications and obstructive sleep apnea in type 2 diabetes. J. Diabetes Res. 2018 Mar 7. 2018. 9269170. doi: 10.1155/2018/9269170.
  41. Didushko O.M., Herych P.R., Cherniavska I.V., Yatsyshyn R.I., Pankiv V.I. Influence of the complex treatment of hypothyroidism on the leptin level in patients with primary hypothyroidism. World of Medicine and Biology. 2018. 3(65). 59-63. DOI 10.26724/2079-8334-2018-3-65-59-63.
  42. Kettner N.M., Mayo S.A., Hua J., Lee C., Moore D.D., Fu L. Circadian dysfunction induces leptin resistance in mice. Cell. Metab. 2015 Sep 1. 22(3). 448-459. doi: 10.1016/j.cmet.2015.06.005.
  43. Shan Z., Ma H., Xie M., Yan P., Guo Y., Bao W. et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015 Mar. 38(3). 529-537. doi: 10.2337/dc14-2073.
  44. Alonso-Pedrero L., Bes-Rastrollo M., Marti A. Effects of antidepressant and antipsychotic use on weight gain: A systematic review. Obes. Rev. 2019 Dec. 20(12). 1680-1690. doi: 10.1111/obr.12934.
  45. Alamer W.M., Qutub R.M., Alsaloumi E.A., Natto N.K., Alshehri R.M., Khafagy A. Prevalence of sleep disorders among patients with type 2 diabetes mellitus in Makkah City: A cross-sectional study. Cureus. 2022 Dec 29. 14(12). e33088. doi: 10.7759/cureus.33088.
  46. Al Dawish M.A., Robert A.A., Braham R., Al Hayek A.A., Al Saeed A., Ahmed R.A., Al Sabaan F.S. Diabetes mellitus in Saudi Arabia: A review of the recent literature. Curr. Diabetes Rev. 2016. 12(4). 359-368. doi: 10.2174/1573399811666150724095130.
  47. Gelhorn H.L., Boye K.S., Shalhoub H., Matza L.S., Jordan J.B., Alhammad A. et al. Patient-reported outcomes and impact of type 2 diabetes: A cross-sectional study in the Kingdom of Saudi Arabia. Patient Prefer. Adherence. 2020 Nov 10. 14. 2231-2242. doi: 10.2147/PPA.S265126.
  48. Pankiv V., Yuzvenko T., Kobyliak N., Pankiv I. Correction of Androgen Deficiency in Men with Type 2 Diabetes. Rev. Recent. Clin. Trials. 2022. 17(1). 34-39. doi: 10.2174/1574887116666211202155304. PMID: 34856912.
  49. Kuo C.P., Lu S.H., Huang C.N., Liao W.C., Lee M.C. Sleep quality and associated factors in adults with type 2 diabetes: A retrospective cohort study. Int. J. Environ. Res. Public Health. 2021 Mar 15. 18(6). 3025. doi: 10.3390/ijerph18063025.
  50. Khandelwal D., Dutta D., Chittawar S., Kalra S. Sleep disorders in type 2 diabetes. Indian J. Endocrinol. Metab. 2017 Sep-Oct. 21(5). 758-761. doi: 10.4103/ijem.IJEM_156_17.
  51. Koffel E., Khawaja I.S., Germain A. Sleep disturban–ces in posttraumatic stress disorder: Updated review and implications for treatment. Psychiatr. Ann. 2016 Mar. 46(3). 173-176. doi: 10.3928/00485713-20160125-01.
  52. Zhang J., Xue R., Li Y.F., Zhang Y.Z., Wei H.W. Anxioly–tic-like effects of treadmill exercise on an animal model of post-traumatic stress disorder and its mechanism. J. Sports Med. Phys. Fitness. 2020 Jan. 60(1). 172-179. doi: 10.23736/S0022-4707.20.10120-8.
  53. Tahmasian M., Sepehry A.A., Samea F., Khodadadifar T., Soltaninejad Z., Javaheripour N. et al. Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders. Hum. Brain Mapp. 2019 Dec 1. 40(17). 5142-5154. doi: 10.1002/hbm.24746.
  54. Khazaie H., Ghadami M.R., Masoudi M. Sleep disturbances in veterans with chronic war-induced PTSD. J. Inj. Violence Res. 2016 Jul. 8(2). 99-107. doi: 10.5249/jivr.v8i2.808.
  55. Geng F., Zhou Y., Liang Y., Zheng X., Li Y., Chen X., Fan F. Posttraumatic stress disorder and psychiatric comorbidity among adolescent earthquake survivors: A longitudinal cohort study. J. Abnorm. Child Psychol. 2019 Apr. 47(4). 671-681. doi: 10.1007/s10802-018-0462-2.
  56. Talbot L.S., Rao M.N., Cohen B.E., Richards A., Inslicht S.S., O’Donovan A. et al. Metabolic risk factors and posttraumatic stress disorder: the role of sleep in young, healthy adults. Psychosom. Med. 2015 May. 77(4). 383-391. doi: 10.1097/PSY.0000000000000176.
  57. Wang D., Zhao J., Zhai S., Ye H., Bu L., Fan F. Does sleep disturbance predicts posttraumatic stress disorder and depression among college students during COVID-19 lockdown? A longitudinal survey. Front. Public Health. 2022 Sep 13. 10. 986934. doi: 10.3389/fpubh.2022.986934.
  58. Fan F., Zhou Y., Liu X. Sleep disturbance predicts posttraumatic stress disorder and depressive symptoms: A cohort study of Chinese adolescents. J. Clin. Psychiatry. 2017 Jul. 78(7). 882-888. doi: 10.4088/JCP.15m10206.
  59. Iftikhar I.H., Donley M.A., Mindel J., Pleister A., Soriano S., Magalang U.J. Sleep duration and metabolic syndrome. An updated dose-risk metaanalysis. Ann. Am. Thorac. Soc. 2015 Sep. 12(9). 1364-1372. doi: 10.1513/AnnalsATS.201504-190OC.
  60. Kang K.W., Kim M.-K., Nam T.-S., Kang K.H., Park W.-J., Moon H.-S. et al. Association between sleep and the metabolic syndrome differs depending on age. J. Sleep Med. 2023 April 30. 20(1). 19-27. doi: 10.13078/Jsm.230001.
  61. Madrid-Valero J.J., Martínez-Selva J.M., Ribeiro do Couto B., Sánchez-Romera J.F., Ordoñana J.R. Age and gender effects on the prevalence of poor sleep quality in the adult population. Gac. Sanit. 2017 Jan-Feb. 31(1). 18-22. doi: 10.1016/j.gaceta.2016.05.013.
  62. Huh J.H., Kang D.R., Jang J.Y., Shin J.H., Kim J.Y., Choi S. et al. Metabolic syndrome epidemic among Korean adults: Korean survey of cardiometabolic syndrome. Atherosclerosis. 2018 Oct. 277. 47-52. doi: 10.1016/j.atherosclerosis.2018.08.003.
  63. Che T., Yan C., Tian D., Zhang X., Liu X., Wu Z. The Association between sleep and metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. (Lausanne). 2021 Nov 19. 12. 773646. doi: 10.3389/fendo.2021.773646.
  64. Iyegha I.D., Chieh A.Y., Bryant B.M., Li L. Associations between poor sleep and glucose intolerance in prediabetes. Psychoneuroendocrinology. 2019 Dec. 110. 104444. doi: 10.1016/j.psyneuen.2019.104444.
  65. Mosavat M., Mirsanjari M., Arabiat D., Smyth A., White–head L. The role of sleep curtailment on leptin levels in obesity and diabetes mellitus. Obes. Facts. 2021. 14(2). 214-221. doi: 10.1159/000514095.
  66. Calvin A.D., Covassin N., Kremers W.K., Adachi T., Macedo P., Albuquerque F.N. et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J. Am. Heart Assoc. 2014 Nov 25. 3(6). e001143. doi: 10.1161/JAHA.114.001143.
  67. Ma H., Kang J., Fan W., He H., Huang F. ROR: nuclear receptor for melatonin or not? Molecules. 2021 May 4. 6(9). 2693. doi: 10.3390/molecules26092693.
  68. Catalano F., De Vito F., Cassano V., Fiorentino T.V., Sciacqua A., Hribal M.L. Circadian clock desynchronization and insulin resistance. Int. J. Environ. Res. Public Health. 2022 Dec 20. 20(1). 29. doi: 10.3390/ijerph20010029.
  69. Besedovsky L., Lange T., Haack M. The sleep-immune crosstalk in health and disease. Physiol. Rev. 2019 Jul 1. 99(3). 1325-1380. doi: 10.1152/physrev.00010.2018.
  70. Smagula S.F., Stone K.L., Redline S., Ancoli-Israel S., Barrett-Connor E., Lane N.E. et al.; Osteoporotic Fractures in Men (MrOS) Research Group. Actigraphy- and polysomnography-measured sleep disturbances, inflammation, and mortality among older men. Psychosom. Med. 2016 Jul-Aug. 78(6). 686-696. doi: 10.1097/PSY.0000000000000312.
  71. Wong S.D., Wright K.P. Jr, Spencer R.L., Vetter C., Hicks L.M., Jenni O.G., LeBourgeois M.K. Development of the circadian system in early life: maternal and environmental factors. J. Physiol. Anthropol. 2022 May 16. 41(1). 22. doi: 10.1186/s40101-022-00294-0.
  72. Ahmad S.B., Ali A., Bilal M., Rashid S.M., Wani A.B., Bhat R.R., Rehman M.U. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell. Mol. Neurobiol. 2023 Aug. 43(6). 2437-2458. doi: 10.1007/s10571-023-01324-w.
  73. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018 Apr. 38(3). 579-593. doi: 10.1007/s10571-017-0510-4.
  74. Aspesi D., Pinna G. Could a blood test for PTSD and depression be on the horizon? Expert Rev. Proteomics. 2018 Dec. 15(12). 983-1006. doi: 10.1080/14789450.2018.1544894.
  75. Kirlioglu S.S., Balcioglu Y.H. Chronobiology revisited in psychiatric disorders: from a translational perspective. Psychiatry Investig. 2020 Aug. 17(8). 725-743. doi: 10.30773/pi.2020.0129.
  76. Onton J., Le L.D. Amount of < 1 Hz deep sleep correlates with melatonin dose in military veterans with PTSD. Neurobiol. Sleep Circadian Rhythms. 2021 Jul 16. 11. 100072. doi: 10.1016/j.nbscr.2021.100072.
  77. Karanikas E., Daskalakis N.P., Agorastos A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: A comprehensive review. Brain Sci. 2021 May 29. 11(6). 723. doi: 10.3390/brainsci11060723.

Вернуться к номеру