Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ

НЕВРОЛОГИ, НЕЙРОХІРУРГИ, ЛІКАРІ ЗАГАЛЬНОЇ ПРАКТИКИ, СІМЕЙНІ ЛІКАРІ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Тrauma" Том 23, №3, 2022

Back to issue

X-ray study of optical density of rat bones after filling bone defects with tricalcium phosphate bone cements

Authors: Поплавська К., Філіпенко В., Карпінська О., Карпінський М., Арутюнян З.
ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка НАМН України», м. Харків, Україна

Categories: Traumatology and orthopedics

Sections: Clinical researches

print version


Summary

Актуальність. В сучасній ортопедії існує чимала кількість варіантів заміщення дефектів кісткової тканини. Увагу дослідників привертали кераміки з фосфатів кальцію. Дослідження показали, що кераміка на основі гідроксіапатиту (ГА) — Ca10(PO4)6(OH)2 та трикальційфосфату (ТКФ) — Ca3(PO4)2 має низку переваг перед іншими біоматеріалами. Проте не з’ясовано, яким саме чином армування вплине на швидкість утворення кісткової тканини в зоні імплантації та на її щільність. Мета: в експерименті на лабораторних тваринах дослідити в динаміці зміни щільності кісткової тканини в зоні дефекту, заповненого цементами на основі α′-TКФ. Матеріали та методи. Проведено рентгенометричне дослідження оптичної щільності кісткової тканини лабораторних щурів після заміщення кісткових дефектів цементами на основі ТКФ. Досліджували зміну оптичної щільності кісткової тканини щурів, яким було зроблено заміщення штучно утвореного дефекту метаепіфізарної зони стегнової кістки α-ТКФ (5 тварин) та α-ТКФ, армованим голчастими кристалами ГА (5 тварин). Щурам в терміни 1, 2 та 3 місяці виконувалася цифрова рентгенографія оперованої та інтакт-ної зон. Було виміряно оптичну щільність кортикального шару кістки в зоні імплантації оперованої кістки та кортикального шару інтактної стегнової кістки метаепіфізарної зони на тому ж рівні. Результати. Визначено, що оптична щільність інтактної кістки у тварин в обох групах упродовж експерименту поступово збільшувалася. Різниці в значенні оптичної щільності інтактних кісток не виявлено (р >> 0,05). Незважаючи на те, що на первинному етапі матеріал заміщення на основі α-ТКФ + ГА має більшу оптичну щільність, у подальшому він деградує і заміщується кістковою тканиною, оптична щільність якої наближається до рівня інтактної кістки. Проведені дослідження показали, що через 1 місяць після заповнення кісткового дефекту більша щільність тканини в зоні дефекту спостерігається у випадку його заповнення кістковим цементом на основі α-ТКФ + ГА, що, скоріше за все, обумовлено більш високою щільністю самого матеріалу порівняно з цементом, у складі якого тільки α-ТКФ. На 2-му місяці після заповнення дефекту спостерігається вирівнювання щільності кісткової тканини в зоні дефекту з щільністю неушкодженої кістки, що дозволяє припустити, що процес заміщення штучно утвореного дефекту метаепіфізарної зони кістковою тканиною відбувся. Висновки. Оптична щільність інтактної кістки у тварин в обох групах упродовж експерименту поступово збільшувалася від 90 ± 8 од. до 98 ± 7 од. в групі з Ca3PO4 + α-ТКФ та від 89 ± 5 од. до 100 ± 12 од. в групі з Ca3PO4 + α-ТКФ + ГА, але статистично значущої різниці щодо оптичної щільності інтактних кісток не виявлено (р >> 0,05). Через 1 місяць після заміщення дефекту Ca3PO4 + α-ТКФ + ГА відмічали статистично значуще (р = 0,017) більшу оптичну щільність оперованої кістки (113 ± 6 од.), ніж при заміщенні Ca3PO4 + α-ТКФ (101 ± 8 од.). Через 2 місяці після початку експерименту оптична щільність інтактних і оперованих кісток на рівні зони заміщення дефекту в обох групах була статистично однаковою, що підтвердилося й через 3 місяці. Це може свідчити про заміщення запов-нювача кістковою тканиною.

Background. In modern orthopedics, there are many options for replacing bone defects. The attention of researchers was drawn to calcium phosphate ceramics. Studies have shown that hydroxyapatite (HA) — Ca10(PO4)6(OH)2 and tricalcium phosphate (TCP) — Ca3(PO4)2 ceramics has a number of advantages over other biomaterials. However, it is not clear how reinforcement will affect the rate of bone formation in the implantation zone and its density. The purpose was to study the dynamics of changes in bone density in the area of a defect filled with α-TCP cements in an experiment on laboratory animals. Materials and methods. X-ray study of the optical density of the bone tissue of laboratory rats after replacing bone defects with TCP cements was carried out. Changes in the optical density of the bone tissue of rats who underwent the replacement of an artificially formed defect in the metaepiphyseal zone of the femur with α-TCP (5 animals) and α-TCP reinforced with needle-like HA crystals (5 animals) were studied. Rats underwent digital radiography of the operated and intact bones in 1, 2, and 3 months. The optical density of the cortical bone was measured in the area of implantation of the operated bone and the cortical layer of the intact femur of the metaepiphyseal zone at the same level. Results. It was found that the optical density of intact bone in animals in both groups gradually increased during the experiment. Differences in the value of the optical density of intact bones were not found (p >> 0.05). Despite the fact that at the initial stage, the replacement material based on α-TCP + HA has a higher optical density, it subsequently degrades and is replaced by bone tissue the optical density of which approaches the level of intact bone. The studies conducted have shown that one month after the replacement of a bone defect, a higher tissue density in the defect zone is observed if it is filled with α-TCP + HA bone cement that is most likely due to a higher density of the material itself compared to cement containing only α-TCP. Two months after filling a defect, there is an alignment of the bone density in the defect zone with the density of intact bone, which suggests that the process of repla-cing the artificially formed defect in the metaepiphyseal zone with bone tissue has occurred. Conclusions. The optical density of intact bone in animals of both groups during the experiment gradually increased: from 90 ± 8 units to 98 ± 7 units in the group of Ca3PO4 + α-TCP and from 89 ± 5 units to 100 ± 12 units in the group of Ca3PO4 + α-TCP + HA, but there was no statistically significant difference in the value of the optical density of intact bones (p >> 0.05). One month after the replacement of a defect with Ca3PO4 + α-TCP + GA, a statistically significantly (p = 0.017) higher optical density of the operated bone (113 ± 6 units) was noted compared to the replacement with Ca3PO4 + + α-TCP (101 ± 8 units). Two months after the experiment was started, the optical density of intact and operated bones at the level of defect replacement was statistically equal in both groups, which was confirmed in 3 months as well. This may indicate the replacement of the filler with bone tissue.


Keywords

експеримент; щури; кісткова тканина; щільність; біодеградація

experiment; rats; bone tissue; density; biodegradation


For the full article you need to subscribe to the magazine.


Bibliography

1. Тимошенко О.П., Карпинский М.Ю., Верецун А.Г. Исследование диагностических возможностей программного комплекса «Х-rays». Медицина и... 2001. № 1. С. 62-64.
2. Вирва О.Є., Головіна Я.О., Малик Р.В., Карпінський М.Ю., Карпінська О.Д. Рентгенометричне дослідження кісткової щільності у разі алокомпозитного ендопротезування (експеримент in vivo). Ортопедия, травматология и протезирование. 2020. № 4. С. 18-24. DOI: 10.15674/0030-59872020418-24.
3. Бююль Ахим, Цефлер Петер. SPSS: искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей: Пер. с нем. СПб.: ДиаСофтЮП, 2005. 608 с.
4. Наследов А. SPSS 19: профессиональный статистический анализ данных. СПб.: Питер, 2011. 400 с. 
5. Зиман З.З. Кальцій-фосфатні біоматеріали. Навчальний посібник. Харків, 2018. 285 с.
6. Филиппенко В.А., Бондаренко С.Е., Мезенцев В.А., Ашукина Н.А. Применение современных биоматериалов для пластики костных дефектов вертлужной впадины при эндопротезировании тазобедренного сустава. Ортопедия, травматология и протезирование. 2012. № 4. С. 24-28.
7. Корж Н.А., Вырва О.Е., Дедух Н.В., Малышкина С.В. Керамические материалы в ортопедии и травматологии (от лабораторных исследований к практической медицине — достижения института). Ортопедия, травматология и протезирование. 2007. № 3. С. 20-30.
8. Zyman Z., Glushko V., Dedukh N. [et al.] Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton. Journal of Materials Science. Materials in Medicine. 2008. Vol. 19 (5). P. 2197-2205.
9. Kanazawa T., Umegaki T., Uchiyama N. Thermal crystallization of amorphous calcium phosphate to α-tricalcium phosphate. J. Chem. Tech. Biotechnol. 1982. Vol. 32. P. 399-406.
10. Fillingham Y. Bone grafts and their substitutes. The Bone & Joint Journal. 2016. Vol. 98-B (1 Suppl. A): Р. 6-9. doi: 10.1302/0301-620X.98B.36350. 
11. Sohn H.S. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. ВМС. Biomaterials Research. 2019. Vol. 23. Article ID: 9. doi: 10.1186/s40824-019-0157-y.
12. Laurencin C., Khan Y., El-Amin S.F. Bone graft substitutes. Expert review of medical devices. 2006. Vol. 3 (1). Р. 49-57. doi: 10.1586/17434440.3.1.49.
13. Zyman Z., Goncharenko A., Rokhmistrov D. Phase evolution during heat treatment of amorphous calcium phosphate derived from fast nitrate synthesis. Processing and Application of Ceramics. 2017. Vol. 11(2). Р. 147-153.
14. Zyman Z., Goncharenko A., Rokhmistrov D. Kinetics and mechanisms of the transformation of precipitated amorphous calcium phosphate with a Ca/P ratio of 1:1 to calcium pyrophosphates. J. Cryst. Growth. 2017. Vol. 478. Р. 117-122.

Back to issue