Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Травма» Том 23, №2, 2022

Вернуться к номеру

Тваринні моделі іммобілізаційних контрактур. Огляд методів та тенденцій

Авторы: Фіщенко В.О., Хасавнех Айхам
Вінницький національний медичний університет ім. М.І. Пирогова, м. Вінниця, Україна

Рубрики: Травматология и ортопедия

Разделы: Справочник специалиста

Версия для печати


Резюме

Контрактури — це хронічна втрата рухливості суглобів, викликана структурними змінами в кісткових тканинах, включаючи м’язи, зв’язки та сухожилля. Вони розвиваються, коли ці зазвичай еластичні тканини заміщуються нееластичними тканинами. Найчастішою причиною контрактур є іммобілізація. Контрактура є складною клінічною проблемою, оскільки характер травми часто не корелює зі ступенем функціонального порушення, що ускладнює прогнозування ризику розвитку патології. Вивчення причинних факторів контрактури на пацієнтах не може бути поширеною клінічною практикою з певних причин, пов’язаних як з етичною стороною проблеми, так і з відсутністю часового фактора спостереження. Моделі на тваринах дозволяють вивчати патогенез захворювання та оцінювати стратегії лікування. Тим не менш, не було розроблено жодної тваринної моделі для оцінки ліктьового суглоба, що необхідно для повного вивчення та розуміння клінічних проблем, характерних для цього складного суглоба. У роботі наведені основні методи моделювання іммобілізаційних контрактур на тваринах. Існує 2 основні підходи до моделювання контрактур суглобів — травматичний та нетравматичний. Травматичні, тобто хірургічні методи фіксації за допомогою спиць, крючків, пластинок тощо, дають надійну фіксацію, але часто супроводжуються ускладненнями у вигляді набряків, запалення, інфікування зони втручання, а також заважають чистоті експерименту, коли необхідно виключити ушкодження тканин навколо суглоба. Нетравматичнї методи моделювання контрактур, тобто за допомогою виключно зовнішніх засобів фіксації, виключають деякі негативні впливи хірургічних методів, але супроводжуються недостатньою надійністю впродовж тривалого часу. Також зовнішня фіксація може викликати набряки, подразнення шкіри, інші негативні прояви. Обидва методи моделювання конт-рактур потребують постійного контролю в процесі проведення експерименту для нівелювання можливих ускладнень та запобігання їм.

Contractures are chronic loss of joint mobility caused by structural changes in bone tissue, including muscles, ligaments and tendons. They develop when these normally elastic tissues are replaced by inelastic tissues. The most common cause of contractures is immobilization. Contracture is a complex clinical problem because the nature of the injury often does not correlate with the degree of functional impairment, which makes it difficult to predict the risk of pathology. The study of the causative factors of contracture in patients may not be a common clinical practice for certain reasons, both related to the ethical side of the problem and the lack of time factor of observation. Animal models allow to study the pathogenesis of the disease and allow to evaluate treatment strategies. However, no animal model has been developed to assess the elbow joint, which is necessary to fully study and understand the clinical problems associated with this complex joint. The paper presents the main methods of modeling immobilization contractures in animals. There are 2 main approaches to modeling joint contractures — traumatic and non-traumatic. Traumatic, is surgical methods of fixation with needles, hooks, plates, etc. give a reliable fixation, but are often accompanied by complications such as edema, inflammation, infection of the area of intervention, as well as interfere with the purity of the experiment, when it is necessary to exclude tissue damage around the joint. Non-traumatic methods of modeling contractures, is with the help of exclusively external means of fixation exclude some of the negative effects of surgical methods, but are accompanied by insufficient reliability for a long time. Also, external fixation can cause swelling, skin irritation and other negative manifestations. Both methods of modeling contractures require constant monitoring during the experiment to level and prevent possible complications.


Ключевые слова

тваринна модель; іммобілізаційна контрактура

animal model; immobilization contracture


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Baranowski A., Schlemmer L., Förster K., Mattyasovszky S.G., Ritz U., Wagner D., Rommens P.M., Hofmann A. A novel rat model of stable posttraumatic joint stiffness of the knee. J. Orthop. Surg. Res. 2018. 13(1). 185. doi: 10.1186/s13018-018-0894-y. 
2. Baranowski A., Schlemmer L., Förster K., Slotina E., Mickan T., Truffel S., Klein A., Mattyasovszky S.G., Hofmann A., Ritz U., Rommens P.M. Effects of losartan and ator-vastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des. Devel. Ther. 2019. 13. 2603-2618. doi: 10.2147/DDDT.S204135.
3. Bartoszek G., Fischer U., Grill E., Muller M., Nadolny S., Meyer G. Impact of joint contracture on older persons in a geriatric setting: A cross-sectional study. Z. Gerontol. Geriatr. 2015. 48. 625-632. doi: 10.1007/s00391-015-0895-y. 
4. Benedini-Elias P.C., Morgan M.C., Gomes A.R., Mattiello-Sverzut A.C. Changes in postnatal skeletal muscle development induced by alternative immobilization model in female rat. Anat. Sci. Int. 2009. 84(3). 218-25. doi: 10.1007/s12565-009-0016-3. 
5. Campbell M., Dudek N., Trudel G. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation. Philadelphia, Pa, USA: Elsevier Saunders; 2014. Joint contractures; pp. 651-655.
6. Charalambous C.P., Morrey B.F. Posttraumatic elbow stiffness. J. Bone Joint Surg. Am. 2012. 94(15). 1428-37. doi: 10.2106/JBJS.K.00711. 
7. Chimoto E., Hagiwara Y., Ando A., Itoi E. Progression of an arthrogenic motion restriction after immobilization in a rat experimental knee model. Ups. J. Med. Sci. 2007. 112(3). 347-55. doi: 10.3109/2000-1967-207. 
8. Cohen M.S., Schimmel D.R., Masuda K., Hastings H. 2nd, Muehleman C. Structural and biochemical evaluation of the elbow capsule after trauma. J. Shoulder Elbow Surg. 2007. 16(4). 484-90. doi: 10.1016/j.jse.2006.06.018. 
9. Engstrand C., Krevers B., Nylander G., Kvist J. Hand function and quality of life before and after fasciectomy for Dupuytren contracture. J. Hand Surg. Am. 2014. 39. 1333-1343. 10.1016/j.jhsa.2014.04.029. 
10. Hagiwara Y., Saijo Y., Chimoto E., Akita H., Sasano Y., Matsumoto F., Kokubun S. Increased elasticity of capsule after immobilization in a rat knee experimental model assessed by scanning acoustic microscopy. Ups. J. Med. Sci. 2006. 111(3). 303-13. doi: 10.3109/2000-1967-054. 
11. Hayashi M., Sekiya H., Takatoku K., Kariya Y., Hoshino Y. Experimental model of knee contracture in extension: its prevention using a sheet made from hyaluronic acid and carboxymethylcellulose. Knee Surg. Sports Traumatol. Arthrosc. 2004. 12(6). 545-51. doi: 10.1007/s00167-004-0512-x. 
12. Heise M., Müller M., Fischer U., Grill E. Quality of life in older individuals with joint contractures in geriatric care settings. Qual Life Res. 2016. 25. 2269-2281. 10.1007/s11136-016-1262-1. 
13. Hildebrand K.A., Sutherland C., Zhang M. Rabbit knee model of post-traumatic joint contractures: the long-term natural history of motion loss and myofibroblasts. J. Orthop. Res. 2004. 22(2). 313-20. doi: 10.1016/j.orthres. 
14. Jawa A., Jupiter J.B., and Ring D., eds. Pathogenesis and classification of elbow stiffness. Оperative elbow surgery, ed. D. Stanley and I. Trail. 2012, Elsevier.
15. Jiang S., Yi X., Luo Y., Yu D., Liu Y., Zhang F., Zhu L., Wang K. A Mini-Invasive Internal Fixation Technique for Studying Immobilization-Induced Knee Flexion Contracture in Rats. J. Vis. Exp. 2019 May 20. 147. doi: 10.3791/59260.
16. Kaneguchi A., Ozawa J., Minamimoto K., Yamaoka K. Active exercise on immobilization-induced contractured rat knees develops arthrogenic joint contracture with pathological changes. J. Appl. Physiol. 2018. 124(2). 291-301. doi: 10.1152/japplphysiol.00438.2017. 
17. Kaneguchi A., Ozawa J., Minamimoto K., Yamaoka K. Morphological and biomechanical adaptations of skeletal muscle in the recovery phase after immobilization in a rat. Clin. Biomech. (Bristol, Avon). 2020 May. 75. 104992. doi: 10.1016/j.clinbiomech.2020.104992. 
18. Kaneguchi A., Ozawa J., Yamaoka K. Anti-inflammatory Drug Dexamethasone Treatment During the Remobilization Period Improves Range of Motion in a Rat Knee Model of Joint Contracture. Inflammation. 2018 Aug. 41(4). 1409-1423. doi: 10.1007/s10753-018-0788-5. 
19. Kojima S., Hoso M., Watanabe M., Matsuzaki T., Hibino I., Sasaki K. Experimental joint immobilization and remobilization in the rats. J. Phys. Ther. Sci. 2014. 26(6). 865-71. doi: 10.1589/jpts.26.865. 
20. Lake S.P., Castile R.M., Borinsky S., Dunham C.L., Havlioglu N., Galatz L.M. Development and use of an animal model to study post-traumatic stiffness and contracture of the elbow. J. Orthop. Res. 2016. 34(2). 354-64. doi: 10.1002/jor.22981. 
21. Monument M.J., Hart D.A., Befus A.D., Salo P.T., Zhang M., Hildebrand K.A. The mast cell stabilizer ketotifen reduces joint capsule fibrosis in a rabbit model of post-traumatic joint contractures. Inflamm. Res. 2012. 61(4). 285-92. doi: 10.1007/s00011-011-0409-3. 
22. Monument M.J., Hart D.A., Salo P.T., Befus A.D., Hildebrand K.A. Posttraumatic elbow contractures: targeting neuroinflammatory fibrogenic mechanisms. J. Orthop. Sci. 2013. 18(6). 869-77. doi: 10.1007/s00776-013-0447-5. 
23. Moore L.K., Lee C.S., Agha O., Liu M., Zhang H., Dang A.B.C., Dang A., Liu X., Feeley B.T. A novel mouse mo-del of hindlimb joint contracture with 3D-printed casts. J. Orthop. Res. 2022 Mar 10. doi: 10.1002/jor.25313.
24. Nagai M., Aoyama T., Ito A., Iijima H., Yamaguchi S., Tajino J., Zhang X., Akiyama H., Kuroki H. Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint. BMC Musculoskelet Disord. 2014. 15. 224. doi: 10.1186/1471-2474-15-224. 
25. Nakano J., Sekino Y., Hamaue Y., Sakamoto J., Yoshimura T., Origuchi T., Okita M. Changes in hind paw epidermal thickness, peripheral nerve distribution and mechanical sensitivity after immobilization in rats. Physiol. Res. 2012. 61(6). 643-7. doi: 10.33549/physiolres.932362. 
26. Niedzielski L.S., Chapman M.T. Changes in burn scar contracture: utilization of a severity scale and predictor of return to duty for service members. J. Burn Care Res. 2015. 36. e212-219. 10.1097/BCR.0000000000000148. 
27. Okazaki R., Sakai A., Uezono Y., Ootsuyama A., Kunugita N., Nakamura T., Norimura T. Sequential changes in transforming growth factor (TGF)-beta1 concentration in synovial fluid and mRNA expression of TGF-beta1 receptors in chondrocytes after immobilization of rabbit knees. J. Bone Miner. Metab. 2001. 19(4). 228-35. doi: 10.1007/s007740170025. 
28. Okita M., Nakano J., Kataoka H., Sakamoto J., Origuchi T., Yoshimura T. Effects of therapeutic ultrasound on joint mobility and collagen fibril arrangement in the endomysium of immobilized rat soleus muscle. Ultrasound Med. Biol. 2009. 35(2). 237-44. doi: 10.1016/j.ultrasmedbio.2008.09.001. 
29. Okita M., Yoshimura T., Nakano J., Motomura M., Eguchi K. Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle. J. Muscle Res. Cell Motil. 2004. 25(2). 159-66. doi: 10.1023/b:jure.0000035851.12800.39. 
30. Onoda Y., Hagiwara Y., Ando A., Watanabe T., Chimoto E., Suda H., Yabe Y., Saijo Y., Itoi E. Joint haemorrhage partly accelerated immobilization-induced synovial adhesions and capsular shortening in rats. Knee Surg. Sports Traumatol. Arthrosc. 2014. 22(11). 2874-83. doi: 10.1007/s00167-013-2659-9. 
31. Sacrey L.A., Alaverdashvili M., Whishaw I.Q. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav. Brain Res. 2009. 204(1). 153-61. doi: 10.1016/j.bbr.2009.05.035.
32. Seidel B.J., Chang L., Lau T.M. Contractures. Originally published: September 20, 2014. Last updated: July 30, 2020. https://now.aapmr.org/contractures/#references.
33. Sogi Y., Yabe Y., Hagiwara Y., Tsuchiya M., Onoda Y., Sekiguchi T., Itaya N., Yoshida S., Yano T., Suzuki K., Onoki T., Itoi E. Joint hemorrhage accelerates cartilage degeneration in a rat immobilized knee model. BMC Musculoskelet Disord. 2020. 21(1). 761. doi: 10.1186/s12891-020-03795-0. 
34. Trudel G., Uhthoff H.K. Contractures secondary to immobility: is the restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys. Med. Rehabil. 2000. 81(1). 6-13. doi: 10.1016/s0003-9993(00)90213-2.
35. Whishaw I.Q., Gorny B., Foroud A., Kleim J.A. Long-Evans and Sprague-Dawley rats have similar skilled reaching success and limb representations in motor cortex but different movements: some cautionary insights into the selection of rat strains for neurobiological motor research. Behav. Brain Res. 2003. 145(1-2). 221-32. doi: 10.1016/s0166-4328(03)00143-8. 
36. Wong K., Trudel G., Laneuville O. Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model. Drug Des. Devel. Ther. 2017. 12. 15-24. doi: 10.2147/DDDT.S144602.
37. You D., Maarouf N., Hildebrand K., Soo A., Schneider P. An in vivo rabbit joint injury model to measure trauma-induced coagulopathy and the effect of timing of administration of ketotifen fumarate on posttraumatic joint contracture. OTA Int. 2022. 5(1 Suppl). e177. doi: 10.1097/OI9.0000000000000177.
38. Zhang Y., Liu Z., Wang K., Lu S., Fan S., Xu L., Cai B. Macrophage migration inhibitory factor regulates joint capsule fibrosis by promoting TGF-β1 production in fibroblasts. Int. J. Biol. Sci. 2021. 17(7). 1837-1850. doi: 10.7150/ijbs.57025. 
39. Zhang Y., Lu S., Fan S., Xu L., Jiang X., Wang K., Cai B. Macrophage migration inhibitory factor activates the inflammatory response in joint capsule fibroblasts following post-traumatic joint contracture. Aging (Albany NY). 2021. 13(4). 5804-5823. doi: 10.18632/aging.202505.
40. Zhou Y., Zhang Q.B., Zhong H.Z., Liu Y., Jing J.H., Wu J.X. Research progress on animal model of joint contracture. Austin Surg. Case Rep. 2016. 1(02). 1006. 
41. Zhou Y., Zhang Q.B., Zhong H.Z., Liu Y., Li J., Lv H., Jing J.H. Rabbit Model of Extending Knee Joint Contracture: Progression of Joint Motion Restriction and Subsequent Joint Capsule Changes after Immobilization. J. Knee Surg. 2020. 33(1). 15-21. doi: 10.1055/s-0038-1676502.

Вернуться к номеру