Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Медицина неотложных состояний» Том 18, №2, 2022

Вернуться к номеру

Ендотелій — головна мішень коронавірусної інфекції

Авторы: Бондар М.В., Пилипенко М.М., Лоскутов О.А.
Національний університет охорони здоров’я України імені П.Л. Шупика, м. Київ, Україна

Рубрики: Медицина неотложных состояний

Разделы: Клинические исследования

Версия для печати


Резюме

Актуальність. У світі на сьогодні накопичено досить багато клінічного досвіду терапії SARS-CoV-2. Однак усе більше з’являється робіт, у яких висвітлюються нові дані про прояви цього вірусного захворювання та наслідки, які можуть впливати як на зміну його клінічної картини, так і на якість життя перехворілого на COVID-19. Тому метою даної роботи було узагальнення результатів літературного пошуку та власного досвіду інтенсивної терапії ендотеліальної дисфункції при коронавірусній інфекції. Матеріали та методи. В основу роботи покладено результати, отримані за допомогою пошукових інтернет-систем «Google» та «PubMed» за ключовими словами: «інтенсивна терапія SARS-CoV-2», «патофізіологічні зміни при коронавірусній інфекції», «ендотеліальна дисфункція». Результати. У цьому огляді наведені патогенетичні ланки COVID-19, механізми вірусного ураження ендотелію, механізми розвитку гіперкоагулопатії, основні напрямки запобігання наслідкам ендоте­ліальної дисфункції та їх лікування. Висновки. Проведений огляд переконливо показав, що інфекція SARS-CoV-2 сприяє розвитку ендотеліту у різних органах як наслідок вірусного ураження. Саме наявністю COVID-19-індукованого ендотеліту можна пояснити системне порушення мікроциркуляції у різних судинних руслах та їх клінічні наслідки.

Background. The world currently has a wealth of clinical experience in the treatment of SARS-Co-2. However, more and more work is emerging that opens up new data on the manifestations of this viral disease and its consequences, which can affect both the change in its clinical picture and the quality of life of patients with COVID-19. Therefore, this work was aimed to summarize the results of literature research and our experience of intensive care of endothelial dysfunction in coronavirus infection. Material and methods. The work is based on the results of a study on the Internet search engines Google and PubMed, with the keywords: intensive care SARS-CoV-2, pathophysiological changes in coronavirus infection, endothelial dysfunction. Results. This review presents the pathogenetic links of COVID-19, mechanisms of viral endothelial damage, mechanisms of hypercoagulopathy, the main directions of prevention and treatment of endothelial dysfunction. Conclusions. The examination convincingly showed that SARS-CoV-2 infection promotes the development of endotheliitis in various organs as a result of viral infection. The presence of COVID-19-induced endotheliitis can explain the systemic microcirculation disorders in various vascular channels and their clinical consequences.


Ключевые слова

COVID-19; ендотелій; коагулопатії; фібриноліз; низькомолекулярні гепарини; нефракціонований гепарин; огляд

COVID-19; endothelium; coagulopathies; fibrinolysis; low molecular weight heparins; unfractionated heparin; review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

  1. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020. Vol. 383(2). Р. 120-128. 
  2. Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir. Med. 2020. Vol. 8(7). Р. 681-686.
  3. Tang N., Li D., Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020. Vol. 18(4). Р. 844-847. 
  4. Leppkes M., Knopf J., Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020. Vol. 58. 102925. 
  5. Gando S., Wada T.Thromboplasminflammation in COVID-19 Coagulopathy: Three Viewpoints for Diagnostic and Therapeutic Strategies. Front Immunol. 2021. Vol. 12. 649122. 
  6. Карпов Ю.А. Эндотелий — новая мишень для лечебного действия ингибиторов ангиотензин-превращающего фермента. Терапевтический архив. 2004. Т. 76. № 6. С. 94-96.
  7. Ji H.-L., Zhao R., Matalon S. et al. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol. Rev. 2020. Vol. 100(3). Р. 1065-1075. 
  8. Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020. Vol. 220. Р. 1-13. 
  9. Yang X., Yang Q., Wang Y. et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J. Thromb. Haemost. 2020. Vol. 18(6). Р. 1469-1472. 
  10. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta. 2020. Vol. 506. Р. 145-148. 
  11. Zhang L., Yan X., Fan Q. et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020. Vol. 18(6). Р. 1324-1329. 
  12. Abelardejo P. Expert Review of anti-infective Therapy. https://dol org/10. 1080/14787210. 2020. 1808462
  13. Helms J., Tacquard C., Severac F. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020. Vol. 46(6). Р. 1089-1098.
  14. Mizurini D.M., Hottz E.D., Bozza P.T. et al. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc. Med. 2021. Vol. 8. 785738. 
  15. Roncon L., Zuin M., Barco S. et al. Incidence of acute pulmonary embolism in COVID-19 patients: Systematic review and meta-analysis. Eur. J. Intern. Med. 2020. Vol. 82. Р. 29-37. 
  16. Poissy J., Goutay J., Caplan M. et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation. 2020. Vol. 142(2) Р. 184-186. 
  17. Arachchillage D.R.J., Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020. Vol. 18(5). Р. 1233-1234. 
  18. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020. Vol. 135(23). Р. 2033-2040. 
  19. Prevention and management of venous thromboembolism in COVID-19 (A rapid national clinical guideline). https://www. sign. ac.uk/media/1893/20210915-prevention-and-management-of-thromboembolism-peer-review-draft. pdf
  20. Susen S., Tacquard C.A., Godon A. et al. Prevention of thrombotic risk in hospitalized patients with COVID-19 and hemostasis monitoring. Critical Care. 2020. Vol. 24. Р. 364. 
  21. White D., MacDonald S., Bull T. Heparin resistance in COVID-19 patients in the intensive care unit. J. Thromb. Thrombolysis. 2020. Vol. 50(2). Р. 287-291. 
  22. Adebayo A., Varzideh F., Wilson S. et al. l-Arginine and COVID-19: An Update. Nutrients. 2021. Vol. 13(11). 3951. 
  23. Szefel J., Danielak A., Kruszewski W.J. Metabolic pathways of l-Arginine and therapeutic consequences in tumors. Adv. Med. Sci. 2019. Vol. 64. Р. 104-110. 
  24. Geiger R., Rieckmann J.C., Wolf T. et al. l-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell. 2016. Vol. 167. Р. 829-842. 
  25. Uhel F., Azzaoui I., Gregoire M. et al. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2017. Vol. 196. Р. 315-327. 
  26. Tepaske R., Velthuis H., Oudemans-van Straaten H.M. et al. Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: A randomised placebo-controlled trial. Lancet. 2001. Vol. 358. Р. 696-701. 
  27. Zhu X., Pribis J.P., Rodriguez P.C. et al. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann. Surg. 2014. Vol. 259. Р. 171-178. 
  28. Bronte V., Zanovello P. Regulation of immune responses by l-Arginine metabolism. Nat. Rev. Immunol. 2005. Vol. 5. Р. 641-654. 
  29. Falck-Jones S., Vangeti S., Yu M. et al Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity. J. Clin. Investig. 2021. Vol. 131. e144734. 
  30. Dean M.J., Ochoa J.B., Sanchez-Pino M.D. et al. Severe COVID-19 Is Characterized by an Impaired Type I Interferon Response and Elevated Levels of Arginase Producing Granulocytic Myeloid Derived Suppressor Cells. Front. Immunol. 2021. Vol. 12. Р. 695972. 
  31. Rees C.A., Rostad C.A., Mantus G. et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA. 2021. Vol. 118(25). e2101708118. 
  32. Sacchi A., Grassi G., Notari S. et al. Expansion of Myeloid Derived Suppressor Cells Contributes to Platelet Activation by L-Arginine Deprivation during SARS-CoV-2 Infection. Cells. 2021. Vol. 10. Р. 2111.
  33. Grimes J.M., Khan S., Badeaux M. et al. Arginine depletion as a therapeutic approach for patients with COVID-19. Int. J. Infect. Dis. 2021. Vol. 102. Р. 566-570.
  34. Liao S.Y., Linderholm A., Showalter M.R. et al. L-Arginine as a potential GLP-1-mediated immunomodulator of Th17-related cytokines in people with obesity and asthma. Obes. Sci. Pract. 2021. Vol. 7. Р. 339-345.
  35. Thomassen M.J., Buhrow L.T., Connors M.J. et al. Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 1997. Vol. 17. Р. 279-283.

Вернуться к номеру