Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ

НЕВРОЛОГИ, НЕЙРОХІРУРГИ, ЛІКАРІ ЗАГАЛЬНОЇ ПРАКТИКИ, СІМЕЙНІ ЛІКАРІ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Тrauma" Том 22, №3, 2021

Back to issue

The state of the sagittal balance of the injured cervical spine depending on the nature of the damage to the subaxial level

Authors: Нехлопочин О.С., Вербов В.В.
ДУ «Інститут нейрохірургії ім. акад. А.П. Ромоданова НАМН України», м. Київ, Україна

Categories: Traumatology and orthopedics

Sections: Clinical researches

print version


Summary

Актуальність. Сучасна хірургія травматичних ушкоджень шийного відділу хребта ґрунтується на трьох основних взаємозв’язаних принципах: декомпресії, реконструкції та стабілізації. Відновлення сагітального профілю є одним із базових завдань реконструктивного етапу хірургічного втручання. Чіткі рекомендації щодо хірургічної тактики травматичних ушкоджень залежно від ступеня деформації відсутні, а стан сагітального балансу травмованого шийного відділу хребта в доопераційний період практично не вивчено. Мета роботи: вивчити стан сагітального профілю та ступінь сегментарної деформації при травматичному ушкодженні шийного відділу хребта на субаксіальному рівні, визначити взаємозв’язок між ними і характером ушкодження хребетно-рухового сегмента. Матеріали та методи. Проведено ретроспективний аналіз даних спондилограм 140 пацієнтів із травматичним ушкодженням шийного відділу хребта на субаксіальному рівні, які перебували на стаціонарному лікуванні у відділенні патології спинного мозку Інституту нейрохірургії імені акад. А.П. Ромоданова НАМН України в період з 2008 до 2018 року. Розраховано показники сегментарного кіфозу та загального шийного лордозу, визначено тип ушкодження згідно з AOSpine Subaxial Cervical Spine Injury Classification System. Результати. Виявлено, що характер ушкодження впливає на ступінь сегментарної деформації (р < 0,001). Максимальну кіфотичну ангуляцію зареєстровано при ушкодженнях типу А1, А2 і С. Вона становила відповідно 13,51° (8,18; 20,07), 21,8° (20,12; 22,96) і 20,01° (17,52; 21,99). Ушкодження типу А2 і С статистично значущо відрізнялися від ушкодження інших типів. Максимальні значення відхилень від нормального сагітального контура зареєстровано у пацієнтів з ушкодженнями типу А2 і С: –26,77° (–32,78; –20,91) і –26,70° (–36,30; –16,77) відповідно. Установлено взаємозалежність між параметрами сегментарного кіфозу і загального шийного лордозу (r2 = 0,766; p < 0,001). Максимальну кореляцію відзначено при ушкодженнях типу А3, А4 і В3 — відповідно –0,93, –0,91 і –0,97 (p < 0,001). Для ушкоджень типу А1 і А2 взаємозв’язок був статистично незначущим (р > 0,05). Висновки. Отримані результати свідчать, що травматичне ушкодження шийного відділу хребта на субаксіальному рівні характеризується широким діапазоном показників кіфотичної сегментарної ангуляції, що значною мірою визначається типом ушкодження. Загальний шийний лордоз має тенденцію до сплощення в більшості випадків, однак ступінь втрати фізіологічної кривизни певною мірою корелює з локальною деформацією.

Background. Three main interrelated principles form the basis for modern surgery of traumatic cervical spine injuries, namely decompression, reconstruction and stabilization. Restoration of the sagittal profile is one of the basic tasks of the reconstructive stage. Currently, there are no clear recommendations for surgical management in traumatic injuries depending on the degree of deformation, and the state of sagittal balance of the injured cervical spine in the preoperative period has practically not been studied. The purpose of the work is to study the state of the sagittal profile and the degree of segmental deformation of the cervical spine following traumatic injury at the subaxial level, to determine the relationship between them and the type of injury. Materials and methods. We performed a retrospective analysis of X-ray data from 140 patients with subaxial cervical spine traumatic injury who were hospitalized at the Department of Spinal Cord Pathology of the Romodanov Neurosurgery Institute of the National Academy of Medical Sciences of Ukraine in the period from 2008 to 2018. We calculated indicators of segmental kyphosis and general cervical lordosis and determined the type of damage according to AO Spine Subaxial Cervical Spine Injury Classification System. Results. We found that the type of the damage affects the degree of segmental deformation (p < 0.001). Type A1, A2 and C injuries show the maximum kyphotic angulation: 13.51° (8.18; 20.07), 21.8° (20.12; 22.96) and 20.01° (17.52; 21.99), respectively. Injuries of type A2 and C statistically significantly differ from other types of lesions. We registered maximum values of deviations from the normal sagittal circuit in patients with injuries types A2 and C: ‒26.77° (‒32.78; ‒20.91) and ‒26.70° (‒36.30; ‒16.77), respectively. The parameters of segmental kyphosis and general cervical lordosis reveal high interdependence (r2 = 0.766, p < 0.001). We found maximum correlation in type A3, A4 and B3 injuries: ‒0.93, ‒0.91 and ‒0.97, respectively (p < 0.001). And types A1 and A2 injuries demonstrated statistically insignificant relationship (p > 0.05). Conclusions. The results show that traumatic injury of the subaxial cervical spine is characterized by a wide range of kyphotic segmental angulation values, which is largely determined by the type of injury. General cervical lordosis tends to flatten in most cases, but the degree of physiological curvature loss correlates with local deformation to some extent.


Keywords

шийний відділ хребта; субаксіальний рівень; травматичне ушкодження; загальний шийний лордоз; сегментарний кіфоз; сагітальний баланс

cervical spine; subaxial level; traumatic injury; general cervical lordosis; segmental kyphosis; sagittal balance


For the full article you need to subscribe to the magazine.


Bibliography

1. Glassman S.D., Bridwell K., Dimar J.R., Horton W., Berven S., Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976). 2005. 30(18). 2024-2029. doi: 10.1097/01.brs.0000179086.30449.96, PMID: 16166889.
2. Tang J.A., Scheer J.K., Smith J.S., Deviren V., Bess S., Hart R.A. et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery. 2015. 76 Suppl 1. S14-21; discussion S21. doi: 10.1227/01.neu.0000462074.66077.2b, PMID: 25692364.
3. Villavicencio A.T., Babuska J.M., Ashton A., Busch E., Roeca C., Nelson E.L. et al. Prospective, randomized, double-blind clinical study evaluating the correlation of clinical outcomes and cervical sagittal alignment. Neurosurgery. 2011. 68(5). 1309-1316; discussion 1316. doi: 10.1227/NEU.0b013e31820b51f3, PMID: 21792113.
4. Kuntz Ct., Levin L.S., Ondra S.L., Shaffrey C.I., Morgan C.J. Neutral upright sagittal spinal alignment from the occiput to the pelvis in asymptomatic adults: a review and resynthesis of the literature. J. Neurosurg. Spine. 2007. 6(2). 104-112. doi: 10.3171/spi.2007.6.2.104. PMID: 17330576.
5. Canavese F., Turcot K., De Rosa V., de Coulon G., Kaelin A. Cervical spine sagittal alignment variations following posterior spinal fusion and instrumentation for adolescent idiopathic scoliosis. Eur. Spine J. 2011. 20(7). 1141-1148. doi: 10.1007/s00586-011-1837-z. PMID: 21559768.
6. Harrison D.D., Troyanovich S.J., Harrison D.E., Janik T.J., Murphy D.J. A normal sagittal spinal configuration: a desirable clinical outcome. J. Manipulative Physiol. Ther. 1996. 19(6). 398-405. PMID: 8864971.
7. Lafage V., Ames C., Schwab F., Klineberg E., Akbarnia B., Smith J. et al. Changes in thoracic kyphosis negatively impact sagittal alignment after lumbar pedicle subtraction osteotomy: a comprehensive radiographic analysis. Spine (Phila Pa 1976). 2012. 37(3). E180-187. doi: 10.1097/BRS.0b013e318225b926. PMID: 21673626.
8. Hardacker J.W., Shuford R.F., Capicotto P.N., Pryor P.W. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine (Phila Pa 1976). 1997. 22(13). 1472-1480; discussion 1480. doi: 10.1097/00007632-199707010-00009. PMID: 9231966.
9. Gore D.R., Sepic S.B., Gardner G.M. Roentgenographic findings of the cervical spine in asymptomatic people. Spine (Phila Pa 1976). 1986. 11(6). 521-524. doi: 10.1097/00007632-198607000-00003. PMID: 3787320.
10. Johnston F.G., Crockard H.A. One-stage internal fixation and anterior fusion in complex cervical spinal disorders. J. Neurosurg. 1995. 82(2). 234-238. doi: 10.3171/jns.1995.82.2.0234. PMID: 7815151.
11. Albert T.J., Vacarro A. Postlaminectomy kyphosis. Spine (Phila Pa 1976). 1998. 23(24). 2738-2745. doi: 10.1097/00007632-199812150-00014. PMID: 9879099.
12. Caspar W., Pitzen T. Anterior cervical fusion and trapezoidal plate stabilization for re-do surgery. Surg. Neurol. 1999. 52(4). 345-351; discussion 351-342. doi: 10.1016/s0090-3019(99)00100-7. PMID: 10555839.
13. Lee S.H., Hyun S.J., Jain A. Cervical Sagittal Alignment: Literature Review and Future Directions. Neurospine. 2020. 17(3). 478-496. doi: 10.14245/ns.2040392.196. PMID: 33022153.
14. Benzel E.C. Biomechanics of Spine Stabilization: Thieme; 2001.
15. Kitis S., Cevik S., Kaplan A., Yilmaz H., Katar S., Comert S. et al. Relationship Between Degeneration or Sagittal Balance With Modic Changes in the Cervical Spine. Cureus. 2021. 13(1). e12949. doi: 10.7759/cureus.12949. PMID: 33527064.
16. Yoshida G., Kamiya M., Yoshihara H., Kanemura T., Kato F., Yukawa Y. et al. Subaxial sagittal alignment and adjacent-segment degeneration after atlantoaxial fixation performed using C-1 lateral mass and C-2 pedicle screws or transarticular screws. J. Neurosurg. Spine. 2010. 13(4). 443-450. doi: 10.3171/2010.4.SPINE09662. PMID: 20887141.
17. Yoshimoto H., Ito M., Abumi K., Kotani Y., Shono Y., Takada T. et al. A retrospective radiographic analysis of subaxial sagittal alignment after posterior C1-C2 fusion. Spine (Phila Pa 1976). 2004. 29(2). 175-181. doi: 10.1097/01.BRS.0000107225.97653.CA. PMID: 14722411.
18. Maynard F.M., Jr., Bracken M.B., Creasey G., Ditunno J.F. Jr., Donovan W.H., Ducker T.B. et al. International Standards for Neurological and Functional Classification of Spinal Cord Injury. American Spinal Injury Association. Spinal Cord. 1997. 35(5). 266-274. doi: 10.1038/sj.sc.3100432. PMID: 9160449.
19. Vaccaro A.R., Koerner J.D., Radcliff K.E., Oner F.C., Reinhold M., Schnake K.J. et al. AOSpine subaxial cervical spine injury classification system. Eur. Spine J. 2016. 25(7). 2173-2184. doi: 10.1007/s00586-015-3831-3. PMID: 25716661.
20. Galbusera F., Wilke H.-J.. Biomechanics of the Spine: Basic Concepts, Spinal Disorders and Treatments. 1st ed: Academic Press; 2018. 456 p.
21. Yu M., Zhao W.K., Li M., Wang S.B., Sun Y., Jiang L. et al. Analysis of cervical and global spine alignment under Roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects. Eur. Spine J. 2015. 24(6). 1265-1273. doi: 10.1007/s00586-015-3832-2. PMID: 25805575.
22. Hey H.W.D., Lau E.T., Wong G.C., Tan K.A., Liu G.K., Wong H.K. Cervical Alignment Variations in Different Postures and Predictors of Normal Cervical Kyphosis: A New Understanding. Spine (Phila Pa 1976). 2017. 42(21). 1614-1621. doi: 10.1097/BRS.0000000000002160. PMID: 28306640.
23. Guo G.M., Li J., Diao Q.X., Zhu T.H., Song Z.X., Guo Y.Y. et al. Cervical lordosis in asymptomatic individuals: a meta-ana-lysis. Journal of Orthopaedic Surgery and Research. 2018. 13(1). 147. doi: 10.1186/s13018-018-0854-6. PMID: 29907118.
24. Okada E., Matsumoto M., Ichihara D., Chiba K., Toyama Y., Fujiwara H. et al. Does the sagittal alignment of the cervical spine have an impact on disk degeneration? Minimum 10-year follow-up of asymptomatic volunteers. Eur. Spine J. 2009. 18(11). 1644-1651. doi: 10.1007/s00586-009-1095-5. PMID: 19609784.
25. Harrison D.D., Harrison D.E., Janik T.J., Cailliet R., Ferrantelli J.R., Haas J.W. et al. Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine (Phila Pa 1976). 2004. 29(22). 2485-2492. doi: 10.1097/01.brs.0000144449.90741.7c. PMID: 15543059.
26. Katsuura A., Hukuda S., Saruhashi Y., Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur. Spine J. 2001. 10(4). 320-324. doi: 10.1007/s005860000243. PMID: 11563618.
27. Lee S.H., Kim K.T., Seo E.M., Suk K.S., Kwack Y.H., Son E.S. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J. Spinal Disord. Tech. 2012. 25(2). E41-47. doi: 10.1097/BSD.0b013e3182396301. PMID: 22037167.
28. Nunez-Pereira S., Hitzl W., Bullmann V., Meier O., Koller H. Sagittal balance of the cervical spine: an analysis of occipitocervical and spinopelvic interdependence, with C-7 slope as a marker of cervical and spinopelvic alignment. J. Neurosurg Spine. 2015. 23(1). 16-23. doi: 10.3171/2014.11.SPINE14368. PMID: 25909271.
29. Tang J.A., Scheer J.K., Smith J.S., Deviren V., Bess S., Hart R.A. et al. The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery. 2012. 71(3). 662-669; discussion 669. doi: 10.1227/NEU.0b013e31826100c9. PMID: 22653395.
30. Slynko I.I., Nekhlopochin A.S. The clinically and biomechanically based optimization of sagittal contour surgical correction of the injured segment with the anterior subaxial fusion. MOJ Applied Bionics and Biomechanics. 2018. 2(2). 150-155. doi: 10.15406/mojabb.2018.02.00058.

Back to issue